Что такое световой микроскоп

Что такое световой микроскоп

Принцип иммерсионного метода микроскопии

Особенности фазово-контрастной микроскопии

Особенности темнопольной микроскопии

Особенности люминесцентной микроскопии

Основные характеристики электронного микроскопа

Подпись преподавателя_________________________________________________________

Теоретическая справка

К работе № 2

Типы микроскопов и принципы микроскопии; правила работы с микроскопом при использовании иммерсионной системы

Микроскопический метод исследования это изучение под микроскопом окрашенных препаратов из исследуемого материала:

предметный столик
тубус с револьвером для объективов
тубусодержатель
основание
штатив
окуляр
Винты для регулирования предметного столика
Конденсор и светофильтры
макровинт
Настройка света
Вклвыкл
микровинт

Световой микроскоп состоит из:

Механической части Механическая часть обеспечивает крепление и движение. Она включает штатив, состоящий из основания и тубусодержателя; тубус с револьвером для объективов; предметный столик для препарата, а также приспособления для крепления конденсора и светофильтров. В штатив встроены механизмы грубого (макровинт) и тонкого (микровинт) перемещения тубусодержателя и пред- метного столика. Оптической части Оптическая часть представлена объективами, окулярами, конденсором и осветительной системой. Осветительный аппарат находится под предметным столиком: осветительная лампа, диафрагма (регулирует объем светового пучка), конденсор (в фокусе конденсора собираются параллельные лучи света). Объективное увеличение: — объективы «сухие» малого и большого увеличения (8х и 40х), — объективы иммерсионные (90х и 100х). Окулярное увеличение: — окуляры 7х, 10х, 15х.

Общее увеличение микроскопа равно произведению увеличения объектива на увеличение окуляра.

Разрешающая способность микроскопа определяется размером наименьшего объекта, который можно увидеть в данный микроскоп. Для световых микроскопов разрешающая способность – 0,2 мкм, для электронного — в 2000 раз выше.

Системы микроскопии

сухая иммерсионная

-между объектом и объективом — между объектом и объективом-

находится воздух; жидкость (масло, вода);

— используется для изучения крупных — используется для изучения

биологических объектов (ботанических, микроорганизмов;

— максимальное увеличение объектива ´40 — увеличение объектива ´90;

Преимущества иммерсионной системы. Масляная системаза счет выравнивания показателей преломления света повышает уровень полезного увеличения микроскопа.

Фазово-контрастное устройство может быть установлено на любом микроскопе. Это система диафрагм, которая используется для превращения невосприимчивых человеческим глазом фазовых колебаний светового луча в амплитудные. Благодаря специ­альному приспособлению в объективе (фазовая пластинка) и в конденсоре (кольцевая диафрагма) эти объекты выглядят более темными (позитивный фазовый контраст) или более светлыми (негативный фазовый контраст) по сравнению с окружающей средой.

Темнопольная микроскопия. В основе лежит принцип рассеивания света мельчайшими взвешеннымичастицами в темном поле при боковом освещении (эффект Тиндаля). При темнопольной микроскопии в объектив попадают только лучи, рассеянные объектом, и не попадают прямые лучи от осветителя. Поэтому наблюдаемые микроорга­низмы кажутся ярко светящимися на темном фоне.

Темнопольную микроскопию применяют для прижизненного изучения лептоспир, спиро­хет, а также микроорганизмов слишком мелких, чтобы их можно было различить при обычном светлопольном освещении. Для темнопольной микроскопии используют обыч­ные объективы и специальные темнопольные конденсоры.

Люминесцентная микроскопия. В основе лежит способность веществ и биологических объектов светиться при воздействии на них ультрафиолетовых лучей. Применяют специальные люминесцентные микроскопы или приспособления к обыч­ным микроскопам. Так как большинство микроорганизмов не обладает собственной люминесценцией, то их предварительно окрашивают (флюорохромируют) сильно разве­денными растворами специальных красителей (флюорохромы), которые связываются с определенными структурами клетки.

Люминесцентную микроскопию применяют также для выявления антигенов и антител. С этой целью используют метод иммунофлюоресценции (люминесцентно-серологический метод). Этот метод позволяет выявить в препарате микробы, содержащие определенные антигены. Для их обнаружения необходимо иметь антисыворотки, содержащие антитела к этим антигенам (к антисывороткам химическим путем присоединены молекулы флюоро-хромов — люминесцирующие сыворотки). На фиксированный препарат во влажной камере наносят люминесцирующую сыворотку, инкубируют, промывают раствором хлорида натрия, высушивают и рассматривают в люминесцентном микроскопе. Если в препарате есть микробы, содержащие антиген, антитела к которому были в люминесцирующей сыворотке, они ярко светятся. Остальные микробы не люминесцируют.

Электронная микроскопия. Изображение в электронном микроскопе образуется не с помощью световых лучей и стеклянных линз, а с помощью потока электронов, который фокусируется электрическим или магнитным полем. Разрешающая способность примерно в 2000 раз больше, чем светового (0,2 нм), и с его помощью можно увидеть даже крупные молеку­лы. Применение электронного микроскопа значительно расширило знания о вирусах, фагах и других микроорганизмах.

Невозможно точно определить, кто изобрёл микроскоп. Считается, что голландский мастер очков Ханс Янссен и его сын Захария Янссен изобрели первый микроскоп в 1590, но это было заявление самого Захария Янссена в середине XVII века. Дата, конечно, не точна, так как оказалось, что Захария родился около 1590 г. Другим претендентом на звание изобретателя микроскопа был Галилео Галилей. Он разработал «occhiolino» («оккиолино»), или составной микроскоп с выпуклой и вогнутой линзами в 1609 г. Галилей представил свой микроскоп публике в Академии деи Линчеи, основанной Федерико Чези в 1603 г. Изображение трёх пчел Франческо Стеллути было частью печати Папы Урбана VIII и считается первым опубликованным микроскопическим символом (см. «Stephen Jay Gould, The Lying stones of Marrakech, 2000»). Кристиан Гюйгенс, другой голландец, изобрел простую двулинзовую систему окуляров в конце 1600-х, которая ахроматически регулировалась и, следовательно, стала огромным шагом вперед в истории развития микроскопов. Окуляры Гюйгенса производятся и по сей день, но им не хватает широты поля обзора, а расположение окуляров неудобно для глаз по сравнению с современными широкообзорными окулярами. Антон Ван Левенгук (1632—1723) считается первым, кто сумел привлечь к микроскопу внимание биологов, несмотря на то, что простые увеличительные линзы уже производились с 1500-х годов, а увеличительные свойства наполненных водой стеклянных сосудов упоминались ещё древними римлянами (Сенека). Изготовленные вручную, микроскопы Ван Левенгука представляли собой очень небольшие изделия с одной очень сильной линзой. Они были неудобны в использовании, однако позволяли очень детально рассматривать изображения лишь из-за того, что не перенимали недостатков составного микроскопа (несколько линз такого микроскопа удваивали дефекты изображения). Понадобилось около 150 лет развития оптики, чтобы составной микроскоп смог давать такое же качество изображения, как простые микроскопы Левенгука. Так что, хотя Антон Ван Левенгук был великим мастером микроскопа, он не был его изобретателем вопреки широко распространённому мнению.

Читайте также:  Серп своими руками из картона

Недавние достижения

Немецкие ученые Штефан Хелль в 2006 году Stefan Hell и Мариано Босси Mariano Bossi из Института биофизической химии разработали оптический микроскоп под названием Наноскоп, позволяющий наблюдать объекты размером около 10 нм и получать высококачественные трёхмерные изображения. [1]

Применение

Человеческий глаз представляет собой биологическую оптическую систему, характеризующуюся определённым разрешением, т. е. наименьшим расстоянием между элементами наблюдаемого объекта (воспринимаемыми как точки или линии), при котором они ещё могут быть отличены один от другого. Для нормального глаза при удалении от объекта на т. н. расстояние наилучшего видения (D = 250 мм), среднестатистическое нормальное разрешение составляет 0,176 мм. Размеры микроорганизмов, большинства растительных и животных клеток, мелких кристаллов, деталей микроструктуры металлов и сплавов и т. п. значительно меньше этой величины. Для наблюдения и изучения подобных объектов и предназначены микроскопы различных типов. С помощью микроскопов определяли форму, размеры, строение и многие другие характеристики микрообъектов. Оптический микроскоп в видимом свете давал возможность различать структуры с расстоянием между элементами до 0,20 мкм. Так было до создания оптического микроскопа наноскопа. [2]

Устройство микроскопа

Оптическая система микроскопа состоит из основных элементов — объектива и окуляра. Они закреплены в подвижном тубусе, расположенном на металлическом основании, на котором имеется предметный столик.

В современном микроскопе практически всегда есть осветительная система (в частности, конденсор с ирисовой диафрагмой), макро- и микро- винты для настройки резкости, система управления положением конденсора.

В зависимости от назначения, в специализированных микроскопах могут быть использованы дополнительные устройства и системы.

Объективы

Иммерсия

Может быть сухой и масляной. а)сухая: показатель преломления равен 1; б)масляная: используется при работе с мелкими объектами, показатель преломления равен 1,33 Иммерсионное масло добывают из деревьев

Окуляры

Система освещения препарата

В первых микроскопах исследователи вынуждены были пользоваться естественными источниками света. Для улучшения освещённости стали использовать зеркало, а затем — и вогнутое зеркало, с помощью которого на препарат направляли лучи солнца или лампы. В современных микроскопах освещение регулируют с помощью конденсора.

Конденсор

Конденсор (от лат. condense — сгущаю, уплотняю), короткофокусная линза или система линз, используемая в оптическом приборе для освещения рассматриваемого или проецируемого предмета. Конденсор собирает и направляет на предмет лучи от источника света, в том числе и такие, которые в его отсутствие проходят мимо предмета; в результате такого «сгущения» светового потока резко возрастает освещённость предмета. Конденсоры применяются в микроскопах, в спектральных приборах, в проекционных аппаратах различных типов (например, диаскопах, эпидиаскопах, фотографических увеличителях и т. д.). Конструкция конденсора тем сложнее, чем больше его апертура. При числовых апертурах до 0,1 применяют простые линзы; при апертурах 0,2—0,3— двухлинзовые конденсоры, выше 0,3—трёхлинзовые. Наиболее распространён конденсор из двух одинаковых плосковыпуклых линз, которые обращены друг к другу сферическими поверхностями для уменьшения сферической аберрации. Иногда поверхности линз конденсора имеют более сложную форму — параболоидальную, эллипсоидальную и т. д. Разрешающая способность микроскопа повышается с увеличением апертуры его конденсора, поэтому конденсоры микроскопов — обычно сложные двух или трёхлинзовые системы. В микроскопах и кинопроекционных аппаратах широко применяют также зеркальные и зеркально-линзовые конденсоры, апертура которых может быть очень велика — угол 2u раствора собираемого пучка лучей достигает 240°. Часто наличие в конденсорах нескольких линз вызвано не только стремлением увеличить его апертуру, но и необходимостью однородного освещения предмета при неоднородной структуре источника света. [3]

Конденсор тёмного поля

Предметный столик

Предметный столик выполняет роль поверхности, на которой размещают микроскопический препарат. В разных конструкциях микроскопов столик может обеспечить координатное движение препарата в поле зрения объектива, по вертикали и горизонтали, или поворот препарата на заданный угол.

Вспомогательные приспособления

Предметные и покровные стёкла

Первые наблюдения в микроскоп производились непосредственно над каким-либо объектом (птичье перо, снежинки, кристаллы и т. п.). Для удобства наблюдения в проходящем свете, препарат стали размещать на стеклянной пластинке (предметное стекло). Иногда эту пластинку делали с лункой — для размещения объекта в капле воды. Позже препарат стали закреплять тонким покровным стеклом, что позволило создавать коллекции образцов, например, гистологические коллекции.

Читайте также:  Класс точности счетчика воды

Классификация

Рабочие лабораторные микроскопы

Бинокулярные микроскопы

Бинокулярный микроскоп (иначе — стереомикроскоп) позволяет получать 2 изображения объекта, рассматриваемые под небольшим углом, что обеспечивает объёмное восприятие. В современных бинокулярных микроскопах одновременно используются два окуляра (по одному на каждый глаз) и обычно 1 объектив. Общее увеличение (объектив*оккуляр) бинокуляров обычно меньше, чем у монокулярных микроскопов. Бинокулярные микроскопы хорошо работают как в проходящем, так и в отражённом свете.. [4]

Наиболее широко бинокуляры используются для исследования неоднородностей поверхности твёрдых непрозрачных тел, таких как горные породы, металлы, ткани; в микрохирургии и пр.

Металлографические микроскопы

Специфика металлографического исследования заключается в необходимости наблюдать структуру поверхности непрозрачных тел. Поэтому микроскоп построен по схеме отраженного света, где имеется специальный осветитель установленный со стороны объектива. Система призм и зеркал направляет свет в объектив, далее свет отражается от не прозрачного объекта и направляется обратно в объектив. ".. [5]

Поляризационный микроскоп

См. также

  • Микроскоп ближнего поля (SNOM)
  • Наноскоп
  • Просвечивающий электронный микроскоп (TEM)
  • Рентгеновский микроскоп
  • Сканирующий атомно-силовой микроскоп (AFM, SPM)
  • Сканирующий ёмкостной микроскоп (SCM)
  • Сканирующий туннельный микроскоп (STM)
  • Сканирующий электронный микроскоп (SEM)
  • Ультрамикроскоп

Примечания

Wikimedia Foundation . 2010 .

Смотреть что такое "Световой микроскоп" в других словарях:

световой микроскоп — микроскоп Оптический прибор, имеющий не менее чем двухступенчатое увеличение и позволяющий делать видимыми детали объекта, не различимые невооруженным глазом с расстояния 250 мм. Примечание Основные составные части светового микроскопа показаны… … Справочник технического переводчика

Световой микроскоп — 2. Световой микроскоп общего назначения D. Allgemeinmikroskop E. General purpose microscope F. Microscope d’usage general Световой микроскоп, позволяющий работать преимущественно в светлом поле Источник: ГОСТ 28489 90: Микроскопы световые.… … Словарь-справочник терминов нормативно-технической документации

световой микроскоп — [light microscope] оптический микроскоп, в котором изображение формируется с помощью светового излучения. С помощью светового микроскопа можно изучать структуру специально подготовленных микрошлифов при увеличении от 30 50 до 1500 2000. Рис. I.… … Энциклопедический словарь по металлургии

световой микроскоп с дистанционным управлением — Специализированный световой микроскоп, управление которым частично или полностью осуществляется дистанционно. Примечание Микроскоп с дистанционным управлением может быть использован для исследования радиоактивных, ядовитых и других веществ. [ГОСТ … Справочник технического переводчика

световой микроскоп для анализа изображения — Специализированный световой микроскоп для измерения и классификации объектов по геометрическим и оптическим параметрам, осуществляемых в полуавтоматическом или автоматическом режимах. [ГОСТ 28489 90] Тематики микроскопы Обобщающие термины виды… … Справочник технического переводчика

световой микроскоп общего назначения — Световой микроскоп, позволяющий работать преимущественно в светлом поле. [ГОСТ 28489 90] Тематики микроскопы Обобщающие термины виды световых микроскопов EN general purpose microscope DE Allgemeinmikroskop FR microscope d’usage general … Справочник технического переводчика

Световой микроскоп с дистанционным управлением — 22. Световой микроскоп с дистанционным управлением D. Fernbedienbares Lichtmikroskop E. Remote control light microscope F. Microscope lumineux é télécommandé Специализированный световой микроскоп, управление которым частично или полностью… … Словарь-справочник терминов нормативно-технической документации

Световой микроскоп для анализа изображения — 23. Световой микроскоп для анализа изображения D. Bildanalyse Lichtmikroskop E. Light microscope for image analysis F. Microscope lumineux pour analyse d’image Специализированный световой микроскоп для измерения и классификации объектов по… … Словарь-справочник терминов нормативно-технической документации

Световой микроскоп общего назначения — 2. Световой микроскоп общего назначения D. Allgemeinmikroskop E. General purpose microscope F. Microscope d’usage general Источник: ГОСТ 28489 90: Микроскопы световые. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

Специализированный световой микроскоп — 6. Специализированный световой микроскоп Специализированный микроскоп D. Spezialmikroskop E. Special microscope F. Microscope spécial Световой микроскоп, предназначенный специально для определенных видов наблюдений и исследований, которые… … Словарь-справочник терминов нормативно-технической документации

Микроскоп — это оптический прибор, позволяющий получить обратное изображение изучаемого объекта и рассмотреть мелкие детали его строения, размеры которых лежат за пределами разрешающей способности глаза.

Разрешающая способность микроскопа дает раздельное изображение двух близких друг другу линий. Невооруженный человеческий глаз имеет разрешающую способность около 1/10 мм или 100 мкм. Лучший световой микроскоп примерно в 500 раз улучшает возможность человеческого глаза, т. е. его разрешающая способность составляет около 0,2 мкм или 200 нм.

Разрешающая способность и увеличение не одно и тоже. Если с помощью светового микроскопа получить фотографии двух линий, расположенных на расстоянии менее 0,2 мкм, то, как бы не увеличивать изображение, линии будут сливаться в одну. Можно получить большое увеличение, но не улучшить его разрешение.

Различают полезное и бесполезное увеличения. Под полезным понимают такое увеличение наблюдаемого объекта, при котором можно выявить новые детали его строения. Бесполезное — это увеличение, при котором, увеличивая объект в сотни и более раз, нельзя обнаружить новых деталей строения. Например, если изображение, полученное с помощью микроскопа, увеличить еще во много раз, спроецировав его на экран, то новые, более тонкие детали строения при этом не выявятся, а лишь соответственно увеличатся размеры имеющихся структур.

Читайте также:  Как проверить операционную систему ноутбука

В учебных лабораториях обычно используют световые микроскопы, на которых микропрепараты рассматриваются с использованием естественного или искусственного света. Наиболее распространены световые биологические микроскопы: БИОЛАМ, МИКМЕД, МБР (микроскоп биологический рабочий), МБИ (микроскоп биологический исследовательский) и МБС (микроскоп биологический стереоскопический). Они дают увеличение в пределах от 56 до 1350 раз. Стереомикроскоп (МБС) обеспечивает подлинно объемное восприятие микрообъекта и увеличивает от 3,5 до 88 раз.

В микроскопе выделяют две системы: оптическую и механическую. К оптической системе относят объективы, окуляры и осветительное устройство (конденсор с диафрагмой и светофильтром, зеркало или электроосветитель).

Устройство световых микроскопов изображено на рис. 1.

Рис. 1. Устройство световых микроскопов:

А — МИКМЕД-1; Б — БИОЛАМ.

1 — окуляр, 2 — тубус, 3 — тубусодержатель, 4 — винт грубой наводки, 5 — микрометренный винт, 6 — подставка, 7 — зеркало, 8 — конденсор, ирисовая диафрагма и светофильтр, 9 — предметный столик, 10 — револьверное устройство, 11 — объектив, 12 — корпус коллекторной линзы, 13 — патрон с лампой, 14 — источник электропитания.

Объектив — одна из важнейших частей микроскопа, поскольку он определяет полезное увеличение объекта. Объектив состоит из металлического цилиндра с вмонтированными в него линзами, число которых может быть различным. Увеличение объектива обозначено на нем цифрами. В учебных целях используют обычно объективы х8 и х40. Качество объектива определяет его разрешающая способность.

Окуляр устроен намного проще объектива. Он состоит из 2-3 линз, вмонтированных в металлический цилиндр. Между линзами расположена постоянная диафрагма, определяющая границы поля зрения. Нижняя линза фокусирует изображение объекта, построенное объективом в плоскости диафрагмы, а верхняя служит непосредственно для наблюдения. Увеличение окуляров обозначено на них цифрами: х7, х10, х15. Окуляры не выявляют новых деталей строения, и в этом отношении их увеличение бесполезно. Таким образом, окуляр, подобно лупе, дает прямое, мнимое, увеличенное изображение наблюдаемого объекта, построенное объективом.

Для определения общего увеличения микроскопа следует умножить увеличение объектива на увеличение окуляра.

Осветительное устройство состоит из зеркала или электроосветителя, конденсора с ирисовой диафрагмой и светофильтром, расположенных под предметным столиком. Они предназначены для освещения объекта пучком света.

Зеркало служит для направления света через конденсор и отверстие предметного столика на объект. Оно имеет две поверхности: плоскую и вогнутую. В лабораториях с рассеянным светом используют вогнутое зеркало.

Электроосветитель устанавливается под конденсором в гнездо подставки.

Конденсор состоит из 2-3 линз, вставленных в металлический цилиндр. При подъеме или опускании его с помощью специального винта соответственно конденсируется или рассеивается свет, падающий от зеркала на объект.

Ирисовая диафрагма расположена между зеркалом и конденсором. Она служит для изменения диаметра светового потока, направляемого зеркалом через конденсор на объект, в соответствии с диаметром фронтальной линзы объектива и состоит из тонких металлических пластинок. С помощью рычажка их можно то соединить, полностью закрывая нижнюю линзу конденсора, то развести, увеличивая поток света.

Кольцо с матовым стеклом или светофильтром уменьшает освещенность объекта. Оно расположено под диафрагмой и передвигается в горизонтальной плоскости.

Механическая система микроскопа состоит из подставки, коробки с микрометренным механизмом и микрометренным винтом, тубуса, тубусодержателя, винта грубой наводки, кронштейна конденсора, винта перемещения конденсора, револьвера, предметного столика.

Подставка — это основание микроскопа.

Коробка с микрометренным механизмом, построенном на принципе взаимодействующих шестерен, прикреплена к подставке неподвижно. Микрометренный винт служит для незначительного перемещения тубусодержателя, а, следовательно, и объектива на расстояния, измеряемые микрометрами. Полный оборот микрометренного винта передвигает тубусодержатель на 100 мкм, а поворот на одно деление опускает или поднимает тубусодержатель на 2 мкм. Во избежание порчи микрометренного механизма разрешается крутить микрометренный винт в одну сторону не более чем на половину оборота.

Тубус или трубка — цилиндр, в который сверху вставляют окуляры. Тубус подвижно соединен с головкой тубусодержателя, его фиксируют стопорным винтом в определенном положении. Ослабив стопорный винт, тубус можно снять.

Револьвер предназначен для быстрой смены объективов, которые ввинчиваются в его гнезда. Центрированное положение объектива обеспечивает защелка, расположенная внутри револьвера.

Тубусодержатель несет тубус и револьвер.

Винт грубой наводки используют для значительного перемещения тубусодержателя, а, следовательно, и объектива с целью фокусировки объекта при малом увеличении.

Предметный столик предназначен для расположения на нем препарата. В середине столика имеется круглое отверстие, в которое входит фронтальная линза конденсора. На столике имеются две пружинистые клеммы — зажимы, закрепляющие препарат.

Кронштейн конденсора подвижно присоединен к коробке микрометренного механизма. Его можно поднять или опустить при помощи винта, вращающего зубчатое колесо, входящее в пазы рейки с гребенчатой нарезкой.

Дата добавления: 2016-02-10 ; просмотров: 3684 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Ссылка на основную публикацию
Adblock detector