Формула коэффициента полезного действия трансформатора

Формула коэффициента полезного действия трансформатора

Коэффициент полезного действия трансформаторапредставля­ет собой отношение полезной мощности, отдаваемой трансформато­ром в нагрузку, к мощности, потребляемой им из первичной сети:

или

Практически к.п.д. трансформато­ров очень высок.

  • для трансформаторов малых мощностей (до 1000 ВА) η = 85 — 95 % ;
  • для трансформаторов больших мощностей η = 95 — 99,5%.

При любой величине и характере нагрузки трансформатора его полезная мощность можно определить по формуле:

где β — коэффициент нагрузки трансформатора

Р2ном— номиналь­ная мощность трансформатора.

— коэффициент мощности трансформатора

Коэффициент нагрузки трансформатора определяется как отношение тока первичной обмотки при данной нагрузке к номинальному току первичной обмотки при номинальной нагрузке, т.е.

— первичной обмотки при выбранной нагрузке;

— номинальный ток первичной обмотки;

Подведенная мощность определя­ется кок сумма полезной мощности трансформатора и мощности потерь:

Потери в меди Рм зависят от тока (от нагрузки) и являются потерями переменными.

Эти потери определяются по формуле

где потери в меди при номинальном токе.

Проведя математические преобразования получаем формулу для определения коэффициента полезного действия трансформатора:

или

На рис. 25.1 построены зависимости η, Ро и Рм от коэффици­ента нагрузки β, откуда видно, что зависимость имеет максимум.

Рис.25.1. Зависимость КПД и потерь трансформатора от коэффициента нагрузки.

Наибольшее значение коэффициента нагрузки β, при котором коэффициент полезного действия трансформатора η имеет максимальное значение определяется по формуле:

Следовательно, наибольший к. п. д. будет при такой нагрузке, при которой постоянные потери равны потерям переменным (Ро =РМ).

Потери постоянные Р — это потери в стали,

Потери переменные Рм — это потери в меди обмоток трансформатора,

Потери в стали определяются из опыта х.х., потери в обмот­ках— из опыта к. з. Номинальная мощность трансформатора ука­зана на его щитке, в паспорте и каталоге. Задаваясь значениями β и cosφ2, можно вычислить к. п. д. трансформатора при любой на­грузке, не подвергая его непосредственным испытаниям.

Дата добавления: 2015-12-29 ; просмотров: 1479 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

"Наш мир погружен в огромный океан энергии, мы летим в бесконечном пространстве с непостижимой скоростью. Всё вокруг вращается, движется — всё энергия. Перед нами грандиозная задача — найти способы добычи этой энергии. Тогда, извлекая её из этого неисчерпаемого источника, человечество будет продвигаться вперёд гигантскими шагами" Никола Тесла (1891)

Читайте также:  Ручка для крышки чайника

суббота, 4 августа 2018 г.

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ТРАНСФОРМАТОРА

§ 3.5. КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ТРАНСФОРМАТОРА
В отличие от электрических машин, трансформатор не имеет движущихся частей, поэтому он не имеет и механических потерь при работе. К потерям, имеющим место при работе трансформатора, относятся потери на гистерезис (в результате постоянного циклического перемагничивания сердечника), на вихревые токи и на нагревание проводов обмоток. Других потерь в трансформаторе практически нет.

Коэффициент полезного действия трансформатора — это отношение отдаваемой активной мощности к потребляемой

где P1 — мощность, потребляемая из сети, P2 мощность, отдаваемая нагрузке. Таким образом, для практического определения КПД трансформатора при номинальной нагрузке необходимо измерить мощности в первичной и вторичной обмотках. Это измерение можно значительно упростить, включив во вторичную обмотку активную нагрузку (рис. 3-10). Тогда (поток рассеяния невелик) и мощность может быть вычислена по показаниям амперметра и вольтметра, включенным во вторичную цепь. Такой метод

определения КПД получил название метода непосредственных измерений. Этот метод весьма прост, но имеет два существенных недостатка: мала точность и неэкономичен. Малая точность обусловлена тем, что КПД трансформаторов очень высок (до 99% и выше) и в некоторых случаях (особенно у трансформаторов большой мощности) мощности P2 и P1 мало отличаются, поэтому незначительные ошибки в показаниях приборов повлекут за собой значительные искажения результата вычисления КПД.

Неэкономичность этого способа состоит в большом расходе электроэнергии за время испытания, так как трансформаторы приходится нагружать до номинальных мощностей. Поэтому метод непосредственных измерений не нашел промышленного применения, но может быть использован для трансформаторов малой мощности с небольшим КПД (например, в учебной практике).

На практике КПД трансформаторов определяют косвенным методом, т. е. путем раздельного определения потерь, исходя из того, что КПД трансформатора можно представить так:

Читайте также:  Обжимное соединение металлопластиковых труб

где Рст потери в стали (в сердечнике) и Рм потери в меди (в обмотках) измеряют в опытах холостого хода и короткого замыкания соответственно.

Для определения потерь обычно пользуются двумя опытами — опытом холостого хода и опытом короткого замыкания.

В опыте холостого хода, в котором на первичную обмотку I подают номинальное напряжение, а вторичную II оставляют разомкнутой, определяют потери в стали трансформатора, т. е. потери на гистерезис и на вихревые токи (рис. 3-11). Эти потери зависят от частоты тока и от значения магнитиого потока. Так как частота тока постоянна (50 Гц), а магнитный поток при номинальном напряжении на первичной обмотке также практически постоянен, то независимо от того, нагружен трансформатор или нет, потери в стали — для него величина постоянная. Таким образом, можно считать, что в холостом режиме энергия, потребляемая трансформатором из сети, расходуется только на потери в стали, поэтому мощность этих потерь измеряют ваттметром, включенным в первичную цепь. Правда, при этом не учитываются потери на нагревание провода первичной обмотки током холостого хода. Но этот ток незначителен и потери от него также незначительны. В этом опыте определяется также коэффициент трансформации k и ток холостого хода I01.

Если вторичную обмотку трансформатора замкнуть накоротко,

а на первичную обмотку подать такое пониженное напряжение (в школьной практике, например, от РНШ), при котором токи в обмотках не превышают их номинальных значений, то энергия, потребляемая трансформатором из сети, расходуется в основном на тепловые потери в проводах обмоток трансформатора (рис. 3-12). В самом деле, при короткозамкнутой вторичной обмотке к первичной подводится пониженное напряжение, поэтому магнитный поток очень мал и потери в стали, зависящие от значения магнитного потока, также малы. Этот опыт называют опытом короткого замыкания.

Следовательно, ваттметр, включенный в первичную цепь трансформатора в опыте короткого замыкания, покажет мощность, соответствующую потерям в меди Рм

Коэффициент полезного действия трансформатора (к.п.д), как и в других мощных устройствах, является одним из важнейших параметров. КПД трансформатора определяется как отношение активной мощности переменного тока, потребляемой нагрузкой к активной мощности, потребляемой от электросети. Формула определения кпд записывается следующим образом:

Читайте также:  Кладка мангала с казаном

(1)

В реальных условиях трансформатор может работать не только в номинальном режиме. Для оценки степени его загрузки по току используется коэффициент загрузки , где I — номинальный выходной ток трансформатора. Тогда ток вторичной обмотки можно записать следующим образом:

После подстановки этого выражения в формулу (1), выражение для вычисления кпд трансформатроы принимает следующий вид:

(5)

Потери в сердечнике трансформатора Pc не зависят от выходного тока I2, а значит и от коэффициента загрузки β. Их можно назвать потерями холостого хода. Если исследовать выражение (5) на экстремум по β, то КПД трансформатора будет иметь максимум при . При этом коэффициент загрузки βОПТ = 0,5 . 0,6. Зависимость потерь в сердечнике трансформатора, его обмотках и КПД от β приведена на рисунке 1.


Рисунок 1 Зависимость КПД трансформатора от коэффициента загрузки β

Потери в обмотках согласно закону Ома пропорциональны квадрату тока и коэффициента загрузки. При постоянном потребляемом токе, что обычно выполняется в маломощных силовых трансформаторах задаемся номинальным током нагрузки (β = 1). В мощных трансформаторах, где ток нагрузки обычно изменяется во времени значение коэффициента загрузки выбирается ββОПТ, что соответствует наименьшим потерям. Крутизна этой зависимости невысокая, максимум выражен слабо и, поэтому, условие не является строгим. Для иллюстрации приведём типовые значения КПД и коэффициента мощности χ на частоте 50 Гц для маломощных трансформаторов. Эта зависимость показана на рисунке 2 [31].


Рисунок 2 Зависимость реализуемого КПД и коэффициента мощности χ от требуемой активной мощности трансформатора

Из графиков, приведенных на рисунке 2, видно, что с ростом выходной мощности растут и максимально достижимые энергетические показатели трансформатора.

  1. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  2. СХЕМА ЗАМЕЩЕНИЯ ТРАНСФОРМАТОРА Брускин Д.Э., Зорохович А.Е., Хвостов В.С.
  3. Режимы работы трансформатора

Вместе со статьей "Коэффициент полезного действия трансформатора" читают:

Ссылка на основную публикацию
Adblock detector