Электретный микрофон мкэ 3 схема включения

Электретный микрофон мкэ 3 схема включения

Предлагаемая схема радиомикрофона достаточно проста, не требует особых навыков в построении радио передающей аппаратуры и не имеет дефицитных деталей. Тем не менее, качество звука (благодаря использованию электретного микрофона МКЭ-3) и стабильность частоты несущей достаточно высоки. Конструкция позволяет освободиться исполнителю от микрофонного кабеля, излучаемый передатчиком сигнал можно поймать на любой вещательный радиоприемник, работающий в УКВ (FM) диапазоне.

Поскольку в микрофон МКЭ-3 уже встроен согласующий полевой транзистор, схема получилось достаточно проста. На транзисторе VT1 (КП103К…М) и стабилитроне VD1 (любой маломощный с напряжением стабилизации 5…7 В) собран параметрический стабилизатор, обеспечивающий стабильность несущей частоты при изменении питающего напряжения. Пренебрегать этим узлом не стоит, если не хотите подстраивать приемник каждые 5 минут. В крайнем случае, можно отказаться от стабилизатора тока (транзистор VT1) и поставить вместо него резистор, но это тоже не лучший вариант.

В задающем генераторе использован транзистор КТ368А, в крайнем случае, можно попробовать поставить КТ3102. На месте VT2 будет работать КТ3107. Катушка L1 для диапазона 66…74 МГц содержит 6 витков провода ПЭВ диаметром 0.56 мм. Катушка бескаркасная, наматывается на оправке диаметром 4 мм, шаг намотки – 1.5 мм. Если есть возможность, то лучше использовать посеребренный провод или посеребрить уже имеющийся, опустив готовую катушку на пару часов в отработанный фиксаж для фотобумаг и пленок. Для работы в так называемом «FM диапазоне» количество витков нужно уменьшить до 4.

Наладка радиомикрофона сводится к настройке генератора на свободный от радиостанций диапазон подстройкой конденсатора С5 и, если нужно, растягиванием или сжатием витков катушки L1.

Последний, но весьма важный совет – избегайте использования в подобных конструкциях транзисторов серии 315 и 361. Невзирая на заверения «специалистов» они мало подходят для работы в УКВ диапазонах и уж тем более, в микрофонных усилителях. Для эксперимента можете прикупить универсальный модуль из набора Мастер Кит и послушать, что он умеет.

САЙТ РАДИОЛЮБИТЕЛЕЙ ВОЛГОГРАДА RA4A. СПРАВОЧНАЯ.

Микрофоны.

Микрофоны классифицируются по признаку преобразования акустических колебаний в электрические и подразделяются на электродинамические, электромагнитные, электростатические (конденсаторные и электретные), угольные и пьезоэлектрические.

Микрофоны характеризуются следующими параметрами:

  1. Чувствительность микрофона—это отношение напряжения на выходе микрофона к воздействующему на него звуковому давлению при заданной частоте (как правило 1000 Гц), выраженное в милливольтах на паскаль (мВ/Па). Чем больше это значение, тем выше чувствительность микрофона.
  2. Номинальный диапазон рабочих частот—диапазон частот, в котором микрофон воспринимает акустические колебания и в котором нормируются его параметры .
  3. Неравномерность частотной характеристики—разность между максимальным и минимальным уровнем чувствительности микрофона в номинальном диапазоне частот.
  4. Модуль полного электрического сопротивления—нормированное значение выходного или внутреннего электрического сопротивления на частоте 1 кГц.
  5. Характеристика направленности—зависимость чувствительности микрофона (в свободном поле на определённой частоте) от угла между осью микрофона и направлением на источник звука.
  6. Уровень собственного шума микрофона—выраженное в децибелах отношение эффективного значения напряжения, обусловленного флуктуациями давления в окружающей среде и тепловыми шумами различных сопротивлений в электрической части микрофона, к напряжению, развиваемому микрофоном на нагрузке при давлении 1 Па при воздействии на микрофон полезного сигнала с эффективным давлением
    0,1 Па.
Читайте также:  Световые фигуры на новый год

В телефонных аппаратах, в основном, применяются электродинамические, электретные и угольные микрофоны. Но, как правило, в 95% кнопочных ТА применяются электретные микрофоны, которые имеют повышенные электроакустические и технические характеристики:

  • широкий частотный диапазон;
  • малую неравномерность частотной характеристики;
  • низкие нелинейные и переходные искажения;
  • высокую чувствительность;
  • низкий уровень собственных шумов.

Рис 1.
Схема включения конденсаторного микрофона.

На рис. 1 приведена схема, объясняющая принцип работы конденсаторного микрофона. Выполненные из электропроводного материала мембрана (1) и электрод (2) разделены изолирующим кольцом (3) и представляют собой конденсатор. Жёстко натянутая мембрана под воздействием звукового давления совершает колебательные движения относительно неподвижного электрода. Конденсатор включен в электрическую цепь последовательно с источником напряжения постоянного тока GB и активным нагрузочным сопротивлением R. При колебаниях мембраны ёмкость конденсатора меняется с частотой воздействующего на мембрану звукового давления. В электрической цепи появляется переменный ток той же частоты и на нагрузочном сопротивлении возникает переменное напряжение, являющееся выходным сигналом микрофона.

Электретные микрофоны по принципу работы являются теми же конденсаторными, но постоянное напряжение в них обеспечивается зарядом электрета, тонким слоем нанесённого на мембрану и сохраняющим этот заряд продолжительное время (свыше 30 лет).

Поскольку электростатические микрофоны обладают высоким выходным сопротивлением, то для его уменьшения, как правило, в корпус микрофона встраивают истоко-вый повторитель на полевом n-каналыюм транзисторе с р-п переходом. Это позволяет снизить выходное сопротивление до величины не более 3 + 4 кОм и уменьшить потери сигнала при подключении к входу усилителя сигнала микрофона. На рис. 2 приведена внутренняя схема электретного микрофона с тремя выводами МКЭ-3.

Рис. 2
Внутренняя схема электретного микрофона МКЭ-3.

У электретных микрофонов с двумя выводами выход микрофона выполнен по схеме усилителя с открытым стоком.

Рис. 3.
Внутренняя схема электретного микрофона МКЭ-389-1.

Рис. 4.
Схема подключения электретных микрофонов с двумя выводами.

На рис. 3 приведена внутренняя схема электретного микрофона с двумя выводами
МКЭ-389-1. Схема подключения такого микрофона приведена на рис. 4. По этой схеме можно подключать практически все электретные микрофоны с двумя выводами, и отечественные и импортные.

В таблице приведены их технические характеристики.

Параметры микрофонов:

Наименование
марка
Чувстви-
тельность
мВПа
Диапазон
частот
Гц
Уровень
шума
дБ
Напр.
пит.
В
Потреб.
ток
мА
Коэфф.
гарм.
%
Неравно-
мерность
ЧХ
дБ
М1-А2 "СОСНА" 515 1507000 28 -1,2 0,007 2
М1-Б2 "СОСНА" 1020
М4-В "СОСНА" >20
М7 "СОСНА" >5 26
МЭК-1А 620 3004000 30 2,34,7 0,2 2
МЭК-1В
МКЭ-3 420 5015000 30 -4,5 12
МКЭ-84 620 3003400 30 1,34,5
МКЭ-377-1А 612 15015000 33 2,36 0,35 4
МКЭ-377-1Б 1020
МКЭ-377-1В 1836
МКЭ-378А 612 3018000 2,36 0,35 1
МКЭ-378Б 1020
МКЭ-389-1 612 3004000 26 4 2
МКЭ-332А 35 5012500 30 29
МКЭ-332Б 612
МКЭ-332В 1224
МКЭ-332Г 2448
МКЭ-333А 35 5012500 30 29
МКЭ-333Б 612
МКЭ-333В 1224
МКЭ-333Г 2448
PANASONIC РАЗМЕР
WM-034 CY 60 2016000 4,510 0,8 9,7х6,7
WM-034 BY 60 2016000
WM-034 CY 195
WM-52 BM 1,510 0,3 9,7х4,5
WM-54 BT 2012000 2,510 0,6
WM-60 AY 58 2016000 210 0,5 6х5
WM-60 AT
WM-60 A 103 55 10012000
WM-62 A 58 2016000 6х2,5
WM-66 D 103 50 1010000 6х2,7
WM 55 A 103 60 2016000 1,510 0,5 9,7х5
WM 56 A 103 58
WM 55 D 103 10010000
китай, стоящий во всех ширпотребовских телефонах и АОНах
SZN-15 E 58 8015000 310 9,7х9
Читайте также:  Техническое обслуживание сантехнического оборудования

Ток потребления микрофона МЭК-1 не более 0,2 мА, МКЭ-377-1 и МКЭ-378 не более 0,35 мА. Потребляемый ток микрофонов М1-А2, М1-Б2 и М-7 не более 70 мкА.

Отличие микрофона МКЭ-332 от МКЭ-333 в том, что МКЭ-332 односторонненаправленный, а МКЭ-333 ненаправленный.

Коэффициент гармоник на частоте 1000 Гц при звуковом давлении 3 Па для микрофонов МКЭ-377-1 и МКЭ-389-1 не более 4 %, МКЭ-378 не более 1 %.

Неравномерность частотной характеристики чувствительности в номинальном диапазоне частот для микрофона МКЭ-3 не более 12 дБ, а для М1-А2, М1-Б2, МЭК-1 и МКЭ-389-1 не более ±2 дБ.

Рис. 5.
Допусковая область частотной характеристики микрофона МКЭ-377-1.

Рис. 6.
Допусковая область частотной характеристики микрофона МКЭ-378.

Журнал о технических устройствах и технологиях. Ковыряние в бытовой технике, электронике: что внутри, как это работает, опыт эксплуатации. Выбор лучшего товара — отзывы, достоинства и недостатки. Покупка, исследование и опыт использования инструментов, изготовление приспособлений. Оборудование мастерской. Ремонт, сделай сам, своими руками, поделки, самоделки. Справочники, полезные советы, лайфхаки.

Имеем: советский микрофон МКЭ-3 диаметром 12 мм с тремя проводками снаружи; непонятно как и к чему его подключать.

Фото 1. Микрофон МКЭ-3 1991 года, производитель «Октава»

Любопытно, что на микрофоне выбита цена 15 руб, т. е. этот экземпляр произведён в тот редкий период времени, когда цены на товары уже устремились вверх (интересно, а сколько он стоил ранее?), но производители всё ещё продолжали писать розничные цены на товарах.

Что внутри

Фото 2. МКЭ-3 в разборке

Резистор 7.5 КΩ. Фигня с позолоченными контактами и маркировкой АА0 (волшебным образом расшифровывается как К513УЕ1А) в современном мире называется JFET (junction gate field-effect transistor), полевым транзистором, а в советские времена это называли «микросхема» (потому, что там внутри ещё есть диод от истока к затвору и резистор) и «истоковый усилитель-повторитель».

Питание у этого микрофона кошмарное:

Фото 3. Устройство МКЭ-3

К чему это можно подключить сейчас — неведомо. Но большая мембрана как бы намекает, что у этого микрофона есть потенциал… в плане повышенной чувствительности.

Переделка

Резко начинаем думать, как переделать этот микрофон на современный лад. Вот схема «электрическая принципиальная» МКЭ-3 и современного электретных микрофонов:

Схема 1. Микрофон курильщика (слева), микрофон нормального человека (справа)

Тут видно, что для переделки нужно удалить резистор и поменять исток и сток транзистора местами:

Фото 4. Перекоммутируем подключение транзистора, резистор игнорим

Если так сделать (как на Фото 4), то микрофон действительно начинает работать при простом подключении в микрофонный вход компьютера, но очень тихо, даже при вывернутом на максимум входном уровне. В самом деле, ведь его 9-ю вольтами питать надо, а тут всего 2.1-2.5В; плюс внутри возможно мешающие делу диод и резистор… Звук будто старый (советский) телевизор бухтит. Т. е. даже мужской голос делает бухтяще-бубнящим, будто ящик резонирует.

Читайте также:  Как подключить вводной автомат в щитке

Поэтому, выкидываем все внутренние детали и ставим нормальный современный транзистор, в даташите которого написано «for audio frequency applications», «for microphone amplifiers» и «low noise». Вот, например, попался некий 2SK301:

Фото 5. Установка одного JFET полевого транзистора 2SK301 вместо всего того, что было

Лёгким движением паяльника пристыковываем… готово:

Фото 6. Сборка модернизированного микрофона

Звук записи отличный, идентичен натуральному почти полностью совпадает с исходным (только немного на басах гулко, но это типично для всех электретных микрофонов), очень громко-чувствительно (в сравнении с более мелкими современными капсюлями, см. ниже). Но выявились две проблемы:

  1. На уровне собственного шума (при записи тишины) слышно лёгкое журчание.
  2. Сопротивление микрофона (точнее транзистора на выходе исток-сток) оказалось 500 Ом, из-за чего он не работает при подключении к смартфону Самсунг (точнее смартфон глючить начинает).

Тут история такая: все смартфоны Samsung имеют возможность подключения проводной гарнитуры с тремя кнопками:

Схема 2. Проводная гарнитура (наушники, микрофон, кнопки) Самсунг

и кнопка «предыдущий» (она же «-«) — это как раз порядка 500 Ом параллельно микрофону.

Для справки: Смартфон Самсунг считает, что подключена гарнитура, даже если просто воткнуть штекер (предлагает запись с внешнего микрофона, звук гонит на гарнитуру). Напряжение на микрофонном контакте с микрофоном (1.4к) — 2.11В, без микрофона — 2.47В.

В общем, возникла идея поставить другой транзистор, вытащив его из более мелкого (1-см-метрового) и плохого по звуку. В первом раскуроченном капсюле оказался 2SK596:

Фото 7. Другой транзистор: 2SK596

Оказалось удивительное: звук на записи хоть и громче, но точь-в-точь такой же на слух (которым тщимся субъективно измерить АЧХ — амплитудно-частотную характеристику), что и был в мелком микрофоне. Т. е. хреновый (повышенная высокачастотность: цыканье, сипение). Вскрываем другой микрофон, с другим «звучанием» (звук на записи с него глуховат и тиховат), там 2SK596S:

Фото 8. Другой транзистор: 2SK596S

Припаиваем и опять: звук точь-в-точь такой же, что и у микрофона, из которого этот транзистор вытащен, только громче (за счёт большей площади мембраны).

Мораль: качество звукозаписи с электретного микрофона катастрофически зависит от транзистора.

Надо искать нормальный JFET. Вроде 2SK170 в Сети считается лучшим. Будем искать.

Тестирование-сравнение микрофонов

Вообще, для тестирования (субъективного, на слух) микрофонов делаем такую штуку:

Фото 9. Массовое тестирование электретных микрофонов

Т. е. для простоты смены микрофонов припаиваем к ним простые разъёмы и приклеиваем номера. Потом для каждого микрофона проигрываем один и тот же кусок какой-нибудь музыкальной композиции (с басами, голосом, всякими высокочастотными инструментами одновременно) через двухполосные динамики или наушники; записываем в порядке номеров. Потом прослушиваем и сравниваем, пишем рецензии.

В частности выяснилось, что все микрофоны на Фото 9 «звучат» по разному. № 1, 2, 3 примерно вдвое тише, чем № 5, 6, 7 (и это понятно: они мельче, мембрана по площади как раз примерно вдвое меньше). Все они (электретные, включая МКЭ-3 с любым транзистором) гудят, бу́хают, как бы воют на низких частотах (басах). У всех уровень шума (при записи тишины) вдвое выше, чем у простейшего динамического за 2 бакса.

Ссылка на основную публикацию
Adblock detector