Схема измерения сопротивления заземляющего устройства

Схема измерения сопротивления заземляющего устройства

Безопасность пользования электрической энергией зависит не только от правильного монтажа электроустановки, но и от соблюдения требований, заложенных нормативной документацией в ее эксплуатацию. Контур заземления здания, как составная часть защитного электрического оборудования, требует периодического контроля своего технического состояния.

Как работает заземляющее устройство

В нормальном режиме электроснабжения контур заземления РЕ-проводником соединен с корпусами всех электроприборов, системой выравнивания потенциалов здания и бездействует: через него, грубо говоря, не проходят никакие токи, за исключением небольших фоновых.

Как заземление защищает человека

При возникновении аварийной ситуации, связанной с пробоем слоя изоляции электропроводки, опасное напряжение появляется на корпусе неисправного электроприбора и по РЕ-проводнику через контур заземления стекает на потенциал земли.

За счет этого величина прошедшего на нетоковедущие части высокого напряжения должна снизиться до безопасного уровня, неспособного причинить электротравму человеку, контактирующему с корпусом неисправного оборудования через землю.

Когда РЕ-проводник или контур заземления нарушены, то отсутствует путь стекания напряжения и ток станет проходить через тело человека, оказавшегося между потенциалами поврежденного бытового прибора и землей.

Поэтому при эксплуатации электрооборудования важно поддерживать в исправном состоянии контур заземления и периодическими электрическими замерами контролировать его состояние.

Как возникает неисправность у заземляющего устройства

В новом исправном контуре электрический ток аварии по РЕ-проводнику поступает на токоотводящие электроды, контактирующие своей поверхностью с грунтом и через них равномерно уходит на потенциал земли. При этом основной поток равномерно разделяется на составляющие части.

В результате длительного нахождения в агрессивной среде почвы металл тоководов покрывается поверхностной окисной пленкой. Начинающаяся коррозия постепенно ухудшает условия прохождения тока, повышает электрическое сопротивление контактов всей конструкции. Ржавчина, образующаяся на стальных деталях, обычно носит общий, а на отдельных участках ярко выраженный местный характер. Связано это с неравномерным наличием химически активных растворов солей, щелочей и кислот, постоянно находящихся в почве.

Образующиеся частицы коррозии в виде отдельных чешуек отодвигаются от металла и этим прекращают местный электрический контакт. Со временем таких мест становиться столько, что сопротивление контура увеличивается и заземляющее устройство, теряя электрическую проводимость, становится неспособным надежно отводить опасный потенциал в землю.

Определить момент наступления критического состояния контура позволяют только своевременные электрические замеры.

Принципы, заложенные в измерение сопротивления заземляющего устройства

В основу метода оценки технического состояния контура заложен классический закон электротехники, выявленный Георгом Омом для участка цепи. С этой целью достаточно через контролируемый элемент пропустить ток от калиброванного источника напряжения и с большой степенью точности замерить проходящий ток, а потом вычислить величину сопротивления.

Метод амперметра и вольтметра

Поскольку контур работает в земле всей своей контактной поверхностью, то ее и следует оценивать при замере. Для этого в почву на небольшом удалении (порядка 20 метров) от контролируемого заземляющего устройства заглубляют электроды: основной и дополнительный. На них подают ток от стабилизированного источника переменного напряжения.

По цепи, образованной проводами, источником ЭДС и электродами с подземной токопроводящей частью грунта начинает протекать электрический ток, величина которого замеряется амперметром.

На очищенную до чистого металла поверхность контура заземления и контакт основного заземлителя подключается вольтметр.

Он замеряет падение напряжения на участке между основным заземлителем и контуром заземления. Разделив значение показания вольтметра на измеренный амперметром ток, можно вычислить общее сопротивление участка всей цепи.

При грубых замерах им можно ограничиться, а для вычисления более точных результатов потребуется скорректировать полученное значение вычитанием величины сопротивления соединительных проводников и влияния диэлектрических свойств почвы на характер токов растекания в грунте.

Уменьшенное на эту величину и замеренное по первому действию общее сопротивление и даст искомый результат.

Описанный способ является довольно простым и неточным, имеет определенные недостатки. Поэтому для выполнения более качественных измерений, производимых специалистами электротехнических лабораторий, разработана более усовершенствованная технология.

Компенсационный метод

Замер основан на использовании уже готовых конструкций метрологических приборов высокого класса точности, выпускаемых промышленностью.

При этом способе тоже используется установка основного и вспомогательного электродов в почву.

Их разносят по длине около 10÷20 метров и заглубляют на одной линии, захватывающей испытываемый контур заземления. К шине заземлительного устройства подключают измерительный зонд, стараясь разместить прибор поближе к контакту шины. Соединительными проводниками соединяют клеммы прибора с установленными в землю электродами.

Источник переменной ЭДС выдает в подключенную схему ток I1, который проходит по замкнутой цепи, образованной первичной обмоткой трансформатора тока ТТ, соединительным проводам, контактам электродов и землей.

Вторичная обмотка трансформатора ТТ воспринимает ток I2, равный первичному и передает его на сопротивление реостата R, позволяющего реохордом «б» выставлять баланс между напряжениями U1 и U2.

Изолирующий трансформатор ИТ транслирует проходящий по его первичной обмотке ток I2 в свою вторичную цепь, замкнутую на измерительный прибор V.

Ток I1, протекающий по грунту на участке между основным заземлителем и контуром заземления, образует на замеряемом нами участке падение напряжения U1, которое вычисляется по формуле:

Ток I2, проходящий по участку реостата R «аб» с сопротивлением rаб, формирует падение напряжения U2, определяемое выражением:

Во время выполнения замера перемещают ручку реохорда таким образом, чтобы отклонение стрелки прибора V установилось на ноль. В этом случае будет выполнено равенство: U1=U2.

Тогда получим: I1∙rx=I2∙rаб.

Поскольку конструкция прибора выполнена так, что I1=I2, то соблюдется соотношение: rx=rаб. Остается только узнать сопротивление участка аб. Но, для этого достаточно ручку потенциометра сделать побольше и на ее подвижную часть вмонтировать стрелку, которая будет перемещаться по неподвижной шкале, проградуированной заранее в единицах сопротивления реостата R.

Таким образом, положение стрелки-указателя реостата при компенсации падений напряжений на двух участках позволяет замерить сопротивление заземляющего устройства.

Используя изолирующий трансформатор ИТ и специальную конструкцию измерительной головки V, добиваются надежной отстройки прибора от блуждающих токов. Высокая точность измерительного механизма способствует малому влиянию переходных сопротивлений зонда на результат замера.

Приборы, работающие по компенсационному методу, позволяют точно замерять сопротивления отдельных элементов. Для этого достаточно на один конец измеряемой цепи подключить проводник, снятый с точки 1, а на второй — измерительный зонд (точка 2) и провод с точки 3 от вспомогательного электрода.

Приборы для измерения сопротивления заземляющего устройства

За время развития энергетики измерительные приборы постоянно совершенствовались в вопросах облегчения использования и получения высокоточных результатов.

Еще несколько десятилетий назад широко применялись только аналоговые измерители производства СССР таких марок, как МС-08, М4116, Ф4103-М1 и их модификации. Они продолжают работать и в наши дни.

Читайте также:  Как собрать авр своими руками

Сейчас их успешно дополняют многочисленные приборы, использующие цифровые технологии и микропроцессорные устройства. Они несколько упрощают процесс замера, обладают высокой точностью, хранят в памяти результаты последних вычислений.

Методика выполнения замера сопротивления заземлительного устройства

После доставки прибора на место проведения замера и извлечения его из транспортировочного кейса готовят шинопровод к подключению контактного проводника: отчищают от следов коррозии место для подключения зажима типа крокодил напильником или устанавливают струбцину с винтовым зажимом, продавливающим верхний слой металла.

Замер сопротивления трехпроводным методом

Требования безопасной работы требуют выполнять измерения при отключенном автоматическом выключателе во вводном щите питания здания либо снятом с заземлителя РЕ-проводнике. Иначе при возникновении аварийного режима ток утечки пойдет через контур и прибор или тело оператора.

Соединительный проводник подключают к прибору и струбцине.

На установленной дистанции молотком забивают в грунт электроды заземлители. Навешивают на них катушки с соединительными проводниками и подключают их концы.

Устанавливают контакты проводов в гнезда прибора, проверяют готовность схемы к работе и величину напряжения помехи между установленными электродами. Она не должна превышать 24 вольта. Если это положение не выполнено, то придется менять места установки электродов и перепроверять этот параметр.

Остается только нажать кнопку выполнения автоматического замера и снять вычисленный результат с дисплея.

Однако, успокаиваться после получения результата первого замера нельзя. Чтобы проверить свою работу необходимо выполнить небольшую серию контрольных измерений, переставляя потенциальный штырь на небольшие дистанции. Расхождение всех полученных значений сопротивлений не должны расходиться более чем на 5%.

Замер сопротивления четырехпроводным методом

Для использования способов вертикального электрического зондирования измерители сопротивления контура заземления можно использовать по четырехпроводной схеме, расставляя приемные электроды по методике Веннера или Шлюмберже.

Этот способ больше подходит для глубинных исследований и вычисления удельного электрического сопротивления грунта.

Вариант подключения прибора марки ИС-20/1 по этой схеме показан на картинке.

Замер сопротивления заземлителя с применением токоизмерительных клещей

При использовании метода необходимо иметь фоновый ток от электроустановки здания в контур заземления. Его величина у большинства приборов, работающих по этому типу, не должна превышать 2,5 ампера.

Замер сопротивления контура без разрыва цепи заземлителей с применением измерительных клещей

Используя измеритель ИС-20/1м можно выполнить электрическую оценку состояния заземлительного устройства здания по следующей схеме.

Замер сопротивления контура без вспомогательных электродов с применением двух измерительных клещей

При этом способе не требуется устанавливать дополнительные электроды в землю, а можно выполнить работу пользуясь двумя токовыми клещами. Их потребуется разнести по шинопроводу заземлительного устройства на расстояние большее чем 30 сантиметров.

Выбор методики проведения замера зависит от конкретных условий эксплуатации оборудования и определяется специалистами лаборатории.

Оценку состояния заземлительного устройства можно выполнять в разное время года. Однако, следует учитывать, что в период большого нахождения влаги в почве во время осенне-весенней распутицы условия для растекания токов в земле наиболее благоприятные, а в сухую жаркую погоду — наихудшие.

Летние замеры при высушенном грунте наиболее качественно отражают реальное состояние контура.

Некоторые электрики рекомендуют для снижения значения сопротивления проливать почву около электродов растворами солей. Следует понимать, что это мера временная и неэффективная. С уходом влаги состояние проводимости вновь ухудшится, а ионы растворенной соли будут разрушать металл, расположенный в почве.

В заключение

Всем внимательным читателям и опытным электрикам предлагается посмотреть на прилагаемую ниже картинку, демонстрирующую простой, на первый взгляд, способ реализации измерения сопротивления заземляющего устройства, который не нашел широкого практического применения в лабораториях.

Объясните в комментариях какие электротехнические процессы происходят при таком способе и как они влияют на точность измерения. Проверьте свои знания, удачи!

1. Общие положения

Данная методика предназначена для производства измерений сопротивлений заземляющих устройств с целью оценки качества заземляющих устройств сравнением измеренных величин сопротивлений с нормами по пункту 1.7.101 ПУЭ (7 изд.) и пункту 26.4 ПТЭЭП. По данной методике выполняются также измерения сопротивлений заземляющих устройств молниезащиты. Методика распространяется и на измерения удельного сопротивления грунта, которое по пункту 1.7.56. ПУЭ следует определять в качестве расчетного значения, соответствующего сезону года, когда сопротивление контура заземления принимает наибольшие значения.
Для получения как можно более реальных результатов пунктом 26.4 ПТЭЭП рекомендуется измерения производить в период наибольшего удельного сопротивления грунта. При завышенных результатах сопротивлений заземляющих устройств, приведенных в таблице № 36 приложения 3.1 ПТЭЭП, они сопоставляются с данными измерений удельного сопротивления грунта.

2. Методы измерений

2.1. Метод измерения прибором MRU-101.

2.1.1 Условия проведения измерений и получения правильных результатов

Для правильного выполнения измерений необходимо выполнить несколько условий. Измеритель автоматически останавливает процедуру измерения в случае обнаружения следующих внештатных ситуаций:

Ситуация Символы дисплея Пояснения
Напряжение шума превышает 24В LIMIT и UN
Напряжение шума превышает 40В LIMIT и OFL издается издается продолжительный звуковой сигнал
Нет измерения текущего тока -r- вместе с символом измерительного гнезда Отсутствие подключения измерительных щупов требуемого сопротивления или измерительные провода не подключены к щупам
Сопротивление измерительных щупов превышает 50кОм LIMIT вместе со значением сопротивления измерительного щупа в дополнительном поле дисплея Уменьшить величину сопротивления измерительного щупа или увеличить влажность грунта вблизи щупа
Измерители вышли за диапазон OFL

Дополнительно измеритель сообщает о ситуациях, в которых результат измерения не может быть признан правильным:

Ситуация Символы дисплея Пояснения
Ошибка измерений из-за отклонения сопротивления щупов более 30% LIMIT
Элементы батареи разрядились BAT
После включения измерителя клавишей R, а также после выбора функции поворотным переключателем на дисплее отображается величина напряжения шума.
Если напряжение шума превышает 24 В, то нет возможности выполнить измерение; в этой ситуации необходимо проверить подключены ли измерительные провода к прибору, подсоединен ли кабель питания к сети, нет ли короткого замыкания или нарушения электрической изоляции измерительных проводов, что может мешать измерениям.
ВНИМАНИЕ! Измеритель предназначен для работы при напряжении шумов меньше чем 40 В. Подача на любые измерительные гнезда напряжения больше чем 40 В может повредить измеритель.

Измерение начинается после нажатия клавиши START.
Прибор выполняет цикл измерений, и если нет ни одной из причин для блокировки, описанной ранее. При измерении основное поле дисплея отображает символы Д-Д — передача сигналов версии данной стадии измерения, а в поле текущие значения параметров, измеряемых в данном режиме измерителя. После окончания измерения отображаются значения величины сопротивления и сопротивления измерительного щупа или удельного сопротивления грунта. Остальные параметры измерителя могут отображаться, при нажатии клавиши SEL.
Измеритель автоматически выбирает диапазон измерения для каждой функции.

Читайте также:  Холодильник атлант принцип работы

Трехполюсная схема — основная схема измерения сопротивления устройств заземления. Процедура такова:
1. Соединить заземлитель с измерительным гнездом измерителя, обозначенным как „Е" (Рис.8);
2. Вбить токовый измерительный щуп в грунт на расстоянии, превышающем 40 м. от исследуемого заземлителя, и соединить измерительным проводом с измерительным гнездом "Н" измерителя;
3. Вбить потенциальный измерительный щуп в фунт на расстоянии, превышающем 20 м от исследуемого заземлителя и соединить с измерительным гнездом „S". Исследуемый заземлитель, токовый щуп и потенциальный щуп необходимо выстроить в одну линию;
4. Поворотный переключатель функций установить в положение RE Зр;
5. Нажать клавишу START;
6. Снять показание сопротивления устройства заземления RE, а также сопротивления измерительных щупов Rs и Rh. Специфические величины могут быть считаны с основного поля дисплея после нажатия клавиши SEL.
7. Повторить измерения (по п.п. 5 и 6) после перемещения потенциального измерительного щупа на 1 м к измеряемому заземлителю. Если результаты измерения отличаются больше чем 3 %, расстояние от токового щупа до исследуемого заземлителя должно быть увеличено значительно, а измерения следует повторять. Оптимальное положение потенциального щупа — 62 % от расстояния между токовым щупом и исследуемым заземлителем.

Рис. 8. Трехполюсная схема для измерения сопротивления заземления

Особое внимание должно быть уделено качеству соединения исследуемого заземлителя с измерительными проводами. Место контакта должно быть очищено от краски, ржавчины, и т. п.
Если сопротивление щупов измерителя слишком высоко, измеренное сопротивление заземления будет иметь дополнительную ошибку.
Особенно большая ошибка измерения наблюдается, когда измеряется малая величина заземляющего устройства, которое имеет свободный контакт с грунтом (такая ситуация наблюдается тогда, когда заземлитель сделан как хороший электрод, в то время как верхний уровень фунта сухой и имеет плохую проводимость).
При этом условии отношение сопротивления измерительных щупов к сопротивлению исследуемого заземлителя очень большое, и, как следствие, ошибка находится в зависимости от этого отношения.
Затем, согласно формуле, данной в приложении „Технические данные " могут быть выполнены вычисления для оценки влияния сопротивления измерительных щупов, что обеспечивается использованием диаграммы, данной в том же приложении.
Контакт измерительных щупов с грунтом может быть улучшен, например, увлажнением водой места, где установлен щуп в грунт или перестановкой щупа в другое место поверхности грунта.
Измерительный провод должен быть также проверен: нет ли повреждений изоляции или не нарушен ли контакт с клеммой щупа, подключен ли зажим к измерительному щупу, не разрушен ли коррозией контакт.
В большинстве случаев точность измерений достаточна. Однако, нужно сознавать величину ошибки, возникающей в результате измерения.

В случае, если, когда необходимо выполнить измерение, без дополнительной ошибки из-за сопротивления измерительных проводов, используют четырехполюсную схему.
ВНИМАНИЕ:
для измерения удельного сопротивления грунта рекомендуется четырехполюсная схема.
Для измерения сопротивления заземления необходимо:
1. Соединить заземлитель с измерительными гнездами измерителя, обозначенными как „Е" и „ES" соответственно (Рис.9).
2. Установить токовый щуп в грунт на расстоянии больше 40 м от заземлителя и соединить с гнездом „Н".
3. Установить потенциальный щуп в грунт на расстоянии 20 м от измеряемого заземлителя, соединенного с гнездом „S". Заземлитель (токовый и потенциальный) и измерительные щупы должны быть выстроены в одну линию.
4. Поворотный переключатель функций должен быть установлен в положение RE 4р.
5. Нажать клавишу START.
6. Снять показание значения сопротивления заземления, а также сопротивлений измерительных щупов Rs и RH. Специфические величины можно считать с основного поля дисплея нажатием клавиши SEL.
7. Повторить измерения (по п.п. 5 и 6) после перемещения потенциального измерительного щупа на 1 м далее к измеряемому заземлителю. Если результаты измерений отличаются больше чем 3 %, то расстояние токового измерительного щупа до исследуемого значительно увеличивают и повторяют измерения. Оптимальное положение потенциального измерительного щупа — 62 % от расстояния между токовым щупом и исследуемым заземлителем.

Рис.9. Четырехполюсная схема измерения сопротивления заземления

2.1.4 Измерение суммарного сопротивления заземлителя по трёхполюсной схеме (с использованием измерительных клещей)

Измерители серии MRU-100 могут быть использованы для измерений параметров многоэлементных заземлителей (совокупность заземляющих электродов соединена в систему устройства заземления) без необходимо­сти их рассоединения.
Измерительные клещи используются для инструментального определения токов, текущих через отдельные электроды устройства заземления, при этом используется следующая процедура:

Рис.10. Использование измерителя для измерения сопротивления многоэлементного устройства заземления по трёхполюсной схеме

1. Соединяют исследуемый заземлитель с измерительным гнездом измерителя, обозначенным символом „Е" (Рис.10).
2. Токовый измерительный щуп вбивают в грунт на расстоянии, превышающем 40 м от исследуемого заземлителя, и соединяют измерительным проводом с измерительным гнездом „Н".
3. Потенциальный щуп устанавливают в грунт на расстоянии 20 м от измеряемого заземлителя, соединенного с гнездом „S". Заземлитель (токовый и потенциальный), измерительные щупы должны быть выстроены в одну линию.
4. Подключить измерительные клещи через кабель к разъему и охватить захватом измерительных кле­щей измерительный провод, подключенный к измерительному гнезду „Е"
5. Поворотный переключатель функций [У] установить в положение RE Зр Я.
6. Нажать клавишу START.
7. Снять показания значения сопротивления заземления RE, а также значения сопротивлений измерительных щупов Rs и RH . Значения специфических параметров могут быть сняты с основного поля дисплея после на­жатия на клавишу SEL.
8. Повторить измерения (по п.п. 5 и 6) после перемещения потенциального измерительного щупа на 1 м далее к измеряемому заземлителю.
Если результаты измерений отличаются больше чем на 3 %, то значительно увеличивают расстояние токового измерительного щупа до исследуемого и повторяют измерения. Оптимальное положение потенциального измерительного щупа — 62 % от расстояния между токовым щупом и исследуемым заземлителем.
При измерениях сопротивления заземлителей, состоящих из системы электродов, соединенных с мачтой линии электропередачи, иногда возникает потребность в определении не только сопротивления отдельных элементов заземлителя, но и общего сопротивления всей его системы электродов. Измерив значения сопротивлений отдельных элементов заземлителя RE1, RE2, RE3, RE4, определяют общую величину сопротивления системы по формуле:

Для измерений удельного сопротивления грунта — измерители используют сопротивления отдельных электродов системы заземлителя, для чего в геологии были разработаны специальные приборы.
В данных приборах аналогичная функция измерения задается простым выбором положения поворотного переключателя функций.
Эта функция с метрологической точки зрения идентична четырехполюсной схеме измерений сопротивления заземления, но содержит дополнительную процедуру ввода в прибор взаимного расстояния между измерительными щупами и электродами заземлителя.
Результат измерения — величина удельного сопротивления фунта определяется автоматически согласно формуле r= 2pd RE, которая применяется в Методике измерения Вернера.

Читайте также:  Вкусный рецепт котлет из чечевицы

Вышеупомянутая методика предполагает равные расстояния между электродами.

Рисунок 11. Схема для измерения удельного сопротивления грунта

Процедура, применяемая для измерения удельного сопротивления грунта, следующая:
1. Измерительные щупы устанавливают в грунт по прямой линии через равные взаимные расстояния и
соединяют с измерительными гнездами обозначенными символами „Н", „S", „ES" и „Е"
2. Поворотный переключатель устанавливают в положение „р".
3. Нажимают клавишу START.
4. Используя клавиши управления стрелками и изменяют величину расстояния между электродами, индицируемую на дисплее так, чтобы она лучше всего с согласовывалась с фактическим расстоянием.
5. Нажимают клавишу START.
6. Снимают показания значения сопротивления заземления RE, а также значения сопротивлений измери­тельных щупов Rs и RH. Значения специфических параметров могут быть сняты с основного поля дисплея после нажатия на клавишу SEL.
ВНИМАНИЕ: в вычислениях принято, что расстояния между отдельными измерительными щупами равны (методика Вернера). Если это не так, то измерения сопротивлений отдельных электродов и последующие вычисления должны выполняться независимо.

2.1.6 Безопасные приемы работы

Работы по измерению выполняется по наряду-допуску или по распоряжению. Вид оформле­ния работ определяет сотрудник электролаборатории, имеющий право выдачи нарядов и распоряжений. К работе допускаются лица из электротехнического персонала не моложе 18 лет, обученные и аттестованные на знание ПТБ, ПЭЭБ и данной методики, обеспеченные инструментом, индивидуальными защитными средствами, спецодеждой.
Состав бригады должен быть не менее двух человек:
— производитель работ с группой по электробезопас­ности не ниже III;
— член бригады с группой по электробезопасности не ниже III.
Металлические стержни не должны иметь заусениц. Молоток должен быть плотно насажен на рукоять и не иметь люфта.
При подаче напряжения от постороннего источника питания должны быть оформлены и выполнены организационные и технические мероприятия, как в месте подключения, так и на рабочем месте.
Соединительные провода, питающий кабель, понижающий трансформатор должны иметь двойную изоляцию.
Приборы в схемах измерений должны быть установлены на изолированном основании.
Запрещается выполнять работы при высокой влажности, а также в огне-, пожаро- и во взрывоопасных средах и помещениях.
По результатам измерений составляется протокол установленной формы. Лица, допустившие нарушения ПТБ или ПТЭЭП, а также допустившие искажения достоверности и точности измерений, несут ответственность в соответствии с законодательством и положением о передвижной электролаборатории.

Защитным заземлением называется преднамеренное электрическое соединение с землей или эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус.

Задача защитного заземления – устранение опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшейся под напряжением.

Принцип действия заземления – снижение напряжения между корпусом, оказавшимся под напряжением, и землей до безопасного значения.

Заземляющие устройства после монтажных работ и периодически не реже один раз в год испытываются по программе Правил устройства электроустановок. По программе испытания производится измерение сопротивления заземляющего устройства.

Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов или трансформаторов или выводов источников однофазного тока, в любое время года должно быть не более 2, 4, 8 Ом соответственно при линейных напряжениях 660, 380, и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Измерения сопротивления контура заземляющего устройства производятся измерителем заземления М416 или Ф4103-М1.

Описание измерителя заземления М416

Измерители заземления М416 предназначены для измерения сопротивления заземляющих устройств, активных сопротивлений и могут быть использованы для определения удельного сопротивления грунта (?). Диапазон измерения прибора от 0,1 до 1000 Ом и имеет четыре диапазона измерения: 0,1 … 10 Ом, 0,5 … 50 Ом, 2,0 … 200 Ом, 100 … 1000 Ом. Источником питания служат три соединенные последовательно сухие гальванические элемента напряжением по 1,5 В.

Измеритель сопротивления заземления Ф4103-М1

Измеритель сопротивления заземления Ф4103-М1 предназначен для измерения сопротивления заземляющих устройств, удельного сопротивления грунтов и активных сопротивлений как при наличии помех, так и без них с диапазоном измерений от 0-0,3 Ом до 0-15 Ком (10 диапазонов).

Измеритель Ф4103 является безопасным.

При работе с измерителем в сетях с напряжением выше 36 В необходимо выполнять требования безопасности, установленные для таких сетей. Класс точности измерительного прибора Ф4103 – 2,5 и 4 (в зависимости от диапазона измерения).

Питание – элемент (R20, RL20) 9 шт. Частота оперативного тока – 265-310 Гц. Время установления рабочего режима — не более 10 секунд. Время установления показаний в положении "ИЗМ I" — не более 6 секунд, в положении "ИЗМII" — не более 30 секунд. Продолжительность непрерывной работы не ограничена. Норма средней наработки на отказ — 7250 часов. Средний срок службы — 10 лет Условия эксплуатации — от минус 25 ° С до плюс 55 ° С. Габаритные размеры, мм – 305х125х155. Масса, кг , не более – 2,2.

Перед проведением измерений измерителем Ф4103 необходимо, по возможности, уменьшить количество факторов, вызывающих дополнительную погрешность, например, устанавливать измеритель практически горизонтально, вдали от мощных электрических полей, использовать источники питания 12±0,25В, индуктивную составляющую учитывать только для контуров, сопротивление которых меньше 0,5 Ом, определять наличие помех и так далее. Помехи переменного тока выявляются по качаниям стрелки при вращении ручки ПДСТ в режиме "ИЗМI". Помехи импульсного (скачкообразного) характера и высокочастотные радиопомехи выявляются по постоянным непериодическим колебаниям стрелки.

Порядок проведения измерения сопротивления контура защитного заземления

1. Установить элементы питания в измеритель заземления.

2. Установить переключатель в положение «Контроль 5 ?», нажать кнопку и вращением ручки «реохорд» добиться установки стрелки индикатора в нулевую отметку шкалы.

3. Подключить соединительные провода к прибору, как показано на рисунке 1, если измерения производятся прибором М416 или рисунке 2, если измерения производятся прибором Ф4103-М1.

4. Углубить дополнительные вспомогательные электроды (заземлитель и зонд ) по схеме рис. 1 и 2 на глубину 0,5 м и подключить к ним соединительные провода.

5. Переключатель установить в положение «Х1».

6. Нажать кнопку и вращая ручку «реохорда» приблизить стрелку индикатора к нулю.

7. Результат измерения умножить на множитель.

Подключение прибора М416 для измерения сопротивления контура заземления

Ссылка на основную публикацию
Супер тряпка для стекол
Для многих мытье окон сопряжено со множеством трудностей. И главной проблемой выступают разводы, которые остаются на стекле. К счастью, сегодня...
Струйный мфу с снпч для дома рейтинг
Несомненным атрибутом офиса долгое время оставалась множительная печатная техника. А сегодня никого не удивить наличием ее дома. К тому же...
Структурная краска для стен способы нанесения видео
Постройка нового дома или ремонт уже имеющегося жилья имеют в общем списке работ обязательный этап — отделку помещений. Любой владелец...
Суперранние сорта огурцов для теплиц
Выращивание овощей в тепличных условиях – весьма распространенная практика сегодня, ведь в нашем климате довольно трудно вырастить хороший урожай в...
Adblock detector