Схема умного зарядного устройства

Схема умного зарядного устройства

9zip.ru Радиотехника, электроника и схемы своими руками Автоматическое умное зарядное устройство для пальчиковых аккумуляторов АА

Как нетрудно догадаться из названия, речь в этой статье пойдёт о простом, но полезном зарядном устройстве. Несмотря на свою простоту, оно умеет делать то, что под силу лишь дорогим фирменным зарядкам и что неведомо дешёвым из магазинов. А именно:

  • восстановление ёмкости аккумуляторов, потерянной вследствие неправильной зарядки или эксплуатации
  • правильный заряд, рекомендованный производителями

Для начала рассмотрим, как же работают обычные зарядные устройства в ценовом диапазоне 500 (и даже 700) рублей: они заряжают аккумулятор фиксированным током, часто — повышенным в несколько раз. Если передержать аккумулятор в такой зарядке дольше положенного, то он начнёт перегреваться, сокращая свой драгоценный ресурс работы.

Более дорогие зарядные устройства обеспечивают правильный цикл, который рекомендуют производители аккумуляторов:

  • разряд аккумулятора
  • заряд с автоматическим определением его окончания
  • отключение

Аккумулятор в таких зарядках можно оставлять без боязни повреждения, однако при отключении от сети аккумулятор может разрядиться через цепи зарядки в виду конструктивных недоработок устройства.

Схема зарядного устройства, предлагаемого здесь, лишена всех недостатков и выполнена с учётом всех требований. Её автором является Сергей Задорожный, ссылка на страницу с авторским описанием:


Архив со схемой, рисунком печатной платы в разрешении 1:1 и схемой расположения элементов: charger_pcb.zip

Алгоритм работы устройства следующий:

  • установка аккумулятора
  • включение питания
  • разряд аккумулятора (горит красный светодиод). этот этап можно пропустить, просто нажав кнопку.
  • автоматическое определение окончания разряда по напряжению на аккумуляторе
  • заряд (горит желтый светодиод) током 1/10 ёмкости
  • автоматическое определение окончания заряда по напряжению на аккумуляторе
  • подзаряд (горят жёлтый и зелёный светодиоды) низким током

Важно: первые два пункта нельзя менять местами!

В режиме подзаряда аккумулятор может находиться сколь угодно долго, поэтому можно смело оставлять аккумулятор в таком зарядном устройстве на ночь — он не будет перегрет и повреждён.

Нетрудно догадаться, что десяток циклов разряд-заряд может частично восстановить аккумулятор, потерявший ёмкость.

Устройство, несмотря на свою функциональность, выполнено без использования микроконтроллеров. Используется лишь одна распространённая микросхема LM2903 (можно заменить на LM393), имеющая в своём составе два компаратора. Один из них управляет процессом разряда аккумулятора, второй — зарядом и подзарядом.

Печатная плата — двухсторонняя, используются компоненты как в выводном исполнении, так и в SMD. Микросхема — в DIP корпусе, стабилизатор TL431 также выводной. Все транзисторы и почти все резисторы — SMD. Резисторы разряда и заряда — выводные, резистор подзаряда — SMD.

Замена деталей: IRLML2402 заменены на IRLML2502 (маркировка G2 ZA 5), IRLML6302 заменены на IRLML6402 (маркировка EB KK 8).

Рассчитывать номиналы элементов необходимо для конкретных аккумуляторов в зависимости от их ёмкости. Как известно, оптимальный режим заряда NiMH аккумуляторов — током, в 10 раз меньшим их ёмкости, в течение примерно 10 часов. Например, для аккумуляторов ёмкостью 1300мА/ч это будет 130мА.

Ток разряда аккумулятора задаётся резистором R7, его сопротивление рассчитывается следующим образом: (Uразр/Iразр). Чтобы разрядить аккумулятор за оптимальное время, в районе одного часа, зададимся током разряда в 250мА. Напряжение на разряженном аккумуляторе должно быть порядка 1,18 вольт. По формуле находим: 1,18/0,25 = 4,7 Ом. Рассеиваемая мощность при этом = U 2 *R = 1,18 2 *4,7 = 0,3Вт.

Выбрав необходимый ток заряда , рассчитываем сопротивление параллельно соединённых резисторов R9||R10 по конечной формуле: 2,94/Iзар-4,7. Для тока в 130мА это будет 2,94/0,13-4,7=18 Ом. Так как это — нужное сопротивление двух параллельно соединённых резисторов, то сопротивление каждого из них должно быть вдвое больше, то есть — 36 Ом. Мощность, выделяемую на каждом из этих резисторов, можно рассчитать по формуле: (Iзар/2) 2 *2R = (0,13/2) 2 *36=0,15Вт.

Ток подзаряда целесообразно выбрать величиной в 2/5 от тока заряда. В рассматриваемом случае — это 50мА. Сопротивление резистора R18 рассчитывается по конечной формуле: 0,6/Iподзар = 0,6/0,05 = 12 Ом. Рассеиваемая при этом мощность равна Iподзар 2 *R = 0,05 2 *12 = 0,03 Вт.

Наладка устройства следующая:

  • Резистор R1 переводится в крайнее левое по схеме положение
  • Аккумулятор устанавливается в зарядное устройство
  • Подключается питание
  • Начинается разряд (горит красный светодиод)
  • Засечь время начала заряда (зажёгся жёлтый светодиод)
  • Через 10 часов, медленно вращая переменный резистор R1, добиться зажигания зелёного светодиода.
Читайте также:  Сигнализация kgb vs 130

Для питания устройства можно использовать зарядное от мобильного телефона, если оно выдаёт 5В ± 10%.

Понравилась статья? Похвастайся друзьям:

Хочешь почитать ещё про схемы своими руками? Вот что наиболее популярно на этой неделе:
Регулируемый блок питания из блока питания компьютера ATX
Схемы и печатные платы блоков питания на микросхемах UC3842 и UC3843
Источник ультрафиолетового излучения из лампы ДРЛ
Мойдодыр одобряет.

LA 13 авг 2019 14:39
Tonwood 13 авг 2019 10:35
Влад 10 дек 2016 14:53
Гость 04 ноя 2014 10:39
Valeriy 04 ноя 2014 8:12

Дальше в разделе радиотехника, электроника и схемы своими руками: Простой измеритель ёмкости и индуктивности на микроконтроллере AT89C2051, схема и описание полезного прибора на микроконтроллере at89c2051 для радиолюбительской лаборатории, который позволит измерять ёмкость конденсаторов и индуктивность в максимально широких пределах

Главная 9zip.ru База знаний радиолюбителя Контакты

Девять кучек хлама:

Дайджест
радиосхем

Новые схемы интернета — в одном месте!


Новые видео:

Эта разработка — продолжение предыдущих умных зарядных

При проведении испытаний и отладки неожиданно значимость измерения ёмкости настолько возросла, что становится уже важнее самого зарядного устройства. Ведь зарядных устройств много, а такого измерителя еще не встречал. Появилась возможность точного определения качества различных зарядных устройств и системы заряда на автомобиле, сразу становится ясно — насколько надежен ещё Ваш аккумулятор и т.п. Ёмкость считается с точностью до 0,01 А*часа, но на индикаторе отображается только целые.

Схема разработана на PIC, программа написана на MikroC PRO for PIC.

Принцип работы основан на вычислении напряжений заряда, поддержки, разряда в зависимости от температуры аккумулятора.

Включение в работу: подсоединить аккумулятор, прижать датчик температуры к корпусу, вставить вилку в сеть, включить выключатель.

Всё. Можно уезжать в отпуск или закрывать гараж на зиму.

Если есть время и желание можно посмотреть что будет делать УЗУ:

  • индикатор показывает поочередно напряжение аккумулятора и его температуру, в течение первой минуты проводится само-диагностика.
  • если аккумулятор требует заряда, УЗУ подключится к сети 220 В, включит ЗАРЯД и будет заряжать до напряжения заряда.
  • если заряд не требуется, УЗУ перейдет в ДЕЖУРНЫЙ режим и будет ждать, пока напряжение не снизится до напряжения поддержки. Тогда включится заряд.

Если решили провести тренировочный цикл или выяснить ёмкость аккумулятора, кнопкой "меню" включите РАЗРЯД: включится разряд и на индикаторе кроме напряжения и температуры появится ёмкость в Ампер-часах. Разряд будет длиться до напряжения разряда, потом включится заряд. Посчитанная ёмкость — это ёмкость, которую может отдать аккумулятор при 10-и часовом разряде (если ток разряда = 0,1 С).

Значение ёмкости будет присутствовать на индикаторе вплоть до тех пор, пока Вы: не выключите УЗУ; не отсоедините аккумулятор; не включите опять режим разряда.

  • программно от зависания МК — Watchdog Timer (на всякий случай, на предыдущих УЗУ сбоев не было) ;
  • к сети 220 В УЗУ подключается самостоятельно только на время заряда, в остальное время УЗУ не потребляет электроэнергию и не подключен к сети;
  • УЗУ не боится случайных замыканий "крокодилов";
  • если напряжение аккумулятора менее 8 вольт, УЗУ не включится;
  • при неправильном подключении аккумулятора — непрерывный световой и звуковой сигнал;
  • при токе заряда менее 0,05 А процесс приостанавливается и периодически проверяется восстановление цепи;
  • нагрев внутри корпуса более 70 °С — отключение всех процессов на 5 минут, на индикаторе А-А-;
  • обрыв (неисправность) датчика температуры DS18B20 — температура считается для заряда и поддержки 50°С, для разряда 0.
  • исчезновение сети 220 В — при разряде и контроле никак не влияет, при заряде: отключается всё, кроме индикации, каждые 5 минут проверяется появление напряжения и восстанавливается прерванный процесс;

Заряд идет апериодическим асинхронным током до напряжения заряда, затем это напряжение поддерживается около 2 часов. Когда на индикаторе только напряжение и температура — 2 часа, а когда ещё и ёмкость — больше.

Конструкция выполнена на трех печатных платах из одностороннего фольгированного стеклотекстолита.

Терморезистор на гибких проводах (черных) расположен недалеко от лампы на обмотке трансформатора. По моему мнению в этом месте будет максимальная температура в случае аварии: при выходе со строя вентилятора или КЗ в каких либо цепях.

Читайте также:  Бокс для однофазного электросчетчика

Наладка

  1. Установить подстроечным резистором напряжение 5,12 вольт.
  2. Зашить в МК программу zar4test.
  3. Подключить вольтметр к аккумулятору и включить УЗУ. На индикаторе будет 1.00 и напряжение. Подбором резистора R3 приводим в соответствие.

4. Последовательно с аккумулятором включаем амперметр. Включаем УЗУ и кнопкой переходим на вторую ступень, будет на индикаторе 2.00 и ток заряда. Резистором R38 приводим в соответствие.

5. На 3 ступени устанавливается ток разряда резистором R20.

6. На 4 ступени подбирается резистор R23 для термозащиты. Я связал терморезистор и датчик вместе и грел феном. После показаний 72,1° на индикаторе появилось А-А-.

Меняйте прошивку на zar41, собирайте и пользуйтесь. Но программа условно — бесплатная. Объясняю:

  • условно — для "предприимчивых людей". Обращайтесь: цена МК + пересылка + 5$.
  • бесплатная для радиолюбителей, которые собирают это УЗУ для своего "любимого коня". Только придется через 10-12 тренировок заново прошить МК.

9 декабря 2015 года внесены изменения в прошивку, поэтому заменен архив zar41. Причина: при возвращении в режим заряда с "засыпания" из-за отключения сети одна из переменных оказывалась неопределенной. А она влияет на длительность периодов цикла.

23 декабря 2015 года внесены изменения в прошивку:

  1. тестовой программы для лучшего реагирования на кнопку, заменен архив zar4test.
  2. рабочей программы для диагностики работы транзистора Т2, при пробое исток-сток УЗУ отключится и на индикаторе появится надпись, похожая на Т 2 о.

Рекомендую Т2 усилить еще таким же, или заменить на транзистор с большим током. Я заказал IRF4905.

Отметим, что подобные зарядные устройства нередко используются для подзарядки различных электрических инструментов, использующихся сотрудниками ЖКХ. Товары для ЖКХ, кстати, по сравнительно низкой цене можно приобрести в компании ЖКХ-МАРКЕТ, которая вот уже на протяжении более 10 лет занимается снабжением жилищно-коммунальных хозяйств в Москве и Московской области.

Потребители часто приобретают такие устройства, которые работают на стандартных аккумуляторах типа АА или ААА. Они могут быть заменены обычными батарейками и специального зарядного устройства не требуется. Все реже и реже появляются, раньше использовавшие аккумуляторы NiMH. Они имеют емкость на 40% больше чем NiCD аккумуляторы. NiMH аккумуляторы с каждым днем совершенствуются. К примеру, если раньше у них саморазряд был высоким, то теперь некоторые аккумуляторы имеют минимальный саморазряд.

Способы зарядки аккумулятора

Когда заряжается аккумулятор, в нем происходят химические преобразования. Та энергия, которая поступает при зарядке, часть нее тратиться на эти преобразования, а часть превращается в тепло. NiMH аккумуляторы при зарядке нагреваются сильнее чем Nicd потому что химические реакции, протекающие при его заряде, являются экзотермическими.

Скорость заряда аккумулятора зависит от величины зарядного тока. Ток зарядки измерят в единицах С – численное значение емкости аккумулятора. Есть несколько видов зарядки:

• капельная зарядка (trickle charge) – ток 0.1 С
• быстрая зарядка (quick charge) – ток 0.3 С
• ускоренная зарядка (fast charge) – ток 0.5-1.0 С

Капельная зарядка

При капельном заряде выбирают маленький ток, потому что зарядка продолжается, если даже аккумулятор заряжен. При таком малом токе аккумулятор не так сильно нагревается. Точно определить окончание процесса зарядки тут невозможно.

Быстрая зарядка аккумулятора

Такая зарядка с током 1С рекомендована не всем аккумуляторам, потому что может открыться вентиляционное отверстие аккумулятора, при высокой температуре окружающей среды (до +40). При быстрой зарядке нужно во время прекратить процесс заряда.

Алгоритм работы быстрого зарядного устройства состоит из нескольких фаз:

1. Определение наличия аккумулятора
2. Квалификация аккумулятора (Qualification)
3. Пред-зарядка (Pre-charge)
4. Переход к быстрой зарядке (Ramp)
5. Быстрая зарядка (Fast charge)
6. Дозарядка (Top-of Tcharge)
7. Поддерживающая зарядка (Maintenance charge)

Фаза определения наличия аккумулятора. Здесь проверяется напряжение на выводах аккумулятора при включенном генераторе зарядного тока примерно 0.1С. Если при этом напряжение будет 1.8 В, аккумулятор отсутствует или поврежден. При высоком напряжении зарядка не должна начинаться, как только будет обнаружено низкое напряжение, зарядка начнется. В остальных фазах должна проводиться проверка наличия аккумулятора, потому что на любой фазе аккумулятор может быть вынут и зарядное устройство должно возвращаться к первой фазе.

Читайте также:  Какие сорта вишни для средней полосы

Фаза квалификации аккумулятора. С этой фазы начинается зарядка аккумулятора. Эта фаза нужна для оценки начального заряда аккумулятора. Судя по напряжению на аккумуляторе, нужно определить, нужна пред-зарядка или нет.

Фаза пред-зарядки. Эта фаза не должна длиться более 30 минут. Фаза пред-зарядки требуется для глубоко разряженных аккумуляторов. Для всех длительных фаз нужен контроль температуры, она не должна превышать 60 градусов во время зарядки.

Фаза перехода к быстрой зарядке. Не желательно сразу включать быстрый ток, лучше постепенно превышать в течение 2-х минут. Быструю зарядку можно начинать, если напряжение на аккумуляторе выше 0.8 В.

Фаза быстрой зарядки. Самое главное в этой фазе – вовремя прекратить заряд, иначе аккумулятор разрушиться. Чтобы вовремя остановить зарядку, можно использовать несколько методов определения заряда.

Для NiCd аккумуляторов применяется dV-метод – это самый быстрый метод определения заряда, к концу зарядки напряжения на аккумуляторе понижается.

Для NiMH аккумуляторов dV-метод работает не так хорошо. И используют dV=0 метод. Здесь детектируют постоянство напряжения на аккумуляторе. Если в течении 10 минут напряжение одно и то же, то пора отключать зарядку.

Также, окончание зарядки можно определить по температуре, так как к концу зарядки давление внутри аккумулятора растет и повышается температура. Некоторые зарядные устройства вместо постоянного тока используют импульсный. Импульсы тока длятся 1 сек. Плюсом такого метода является то, что он лучше выравнивает концентрацию активных веществ по всему объему, уменьшает вероятность образования крупных кристаллических образований на электродах и их пассивацию.

Фаза дозарядки. В этой фазе ток зарядки должен быть 0.1-0.3 С. Длительность дозарядки – 30 минут, далее уже будет перезарядка. После быстрого заряда лучше остудить аккумулятор и после начать процесс дозарядки.

Фаза поддерживающей зарядки. Постоянный ток для аккумулятора вреден, так как аккумулятор постоянно будет иметь высокую температуру. После окончания зарядки, аккумуляторы NiCd переходят в капельный режим, для поддержания заряда. А аккумуляторы NiMH не переносят перезаряд и поэтому поддержание заряда им пользу мало принесет. В принципе, можно обойтись и без этой фазы.

Сверхбыстрый заряд

Можно использовать ток до 3С. Когда аккумулятор заряжен на 70%, заряд нужно уменьшить и продолжать в обычном режиме. Если этого не сделать сверхвысокий нагрев аккумулятора разрушит его или даже взрыв.

«Умное» зарядное устройство

Аккумуляторы одного форм-фактора. К примеру, NiMH аккумуляторы размера АА имеют емкость 1900-2850 мА/ч, а аккумуляторы размера ААА – 750-1100 мА/ч. Ток зарядки должен быть пропорционален емкости аккумулятора. При зарядке большим током аккумулятора с маленькой емкостью, будет нагрев. При зарядке маленьким током, время зарядки будет длительным. В общем, зарядное устройство должно контролировать ток, то есть, использовать большой ток для аккумуляторов с большой емкостью и маленький ток для меньшей емкости. В этом заключается смысл «умного» зарядного устройства.

Проблема выключения питания зарядного устройства

Если при процессе зарядки питание зарядного устройства выключено, то при включении питания должен произойти переход на фазу определения наличия аккумулятора. При этом зарядка начинается сначала и дозарядка будет произведена полностью. Минус частой дозарядки в том, что оно может перерасти в перезарядку. «Умный» аккумулятор Li+ содержит контролер, измеряющий величину заряда.

Первичные источники тока

Первичные источники тока – это батарейки (щелочные и марганцево-цинковые). Отличие между первичными источниками и аккумуляторами является внутреннее сопротивление, которое у первичных источников выше. Если внутреннее сопротивление будет больше нормы, процесс зарядки прервется.

Эффект памяти и восстановления аккумуляторов

Проявляется эффект памяти в NiCd аккумуляторах. Смысл эффекта заключается в том, что на электродах образуются крупные кристаллические образования, в результате часть объема активного вещества аккумулятора перестает использоваться. Для устранения эффекта памяти рекомендуется полная разрядка. Такая полная разрядка рекомендуется проводить в аккумуляторах NiMH перед их зарядкой. Будет лучше, если иметь зарядное устройство с функцией разряда.

Взаимодействие аккумуляторов в сборке

Отдельные аккумуляторы в батареи могут иметь разные характеристики. Аккумуляторы, которые имеют меньшую емкость, будут разрушаться в процессе разрядки сборки. И каждый аккумулятор в батареи должен заряжаться отдельно, но в готовых сборках есть только два вывода и возможен только совместный заряд. В этом случае нужно выравнивание.

Ссылка на основную публикацию
Adblock detector