Теория электромагнитного поля кратко

Теория электромагнитного поля кратко

Nav view search

Навигация

Искать

Электромагнитное поле. Теория Максвелла

Подробности Категория: Электричество и магнетизм Опубликовано 05.06.2015 20:46 Просмотров: 15517

Переменные электрическое и магнитное поля при определённых условиях могут порождать друг друга. Они образуют электромагнитное поле, которое вовсе не является их совокупностью. Это единое целое, в котором эти два поля не могут существовать друг без друга.

Из истории

Опыт датского учёного Ханса Кристиана Эрстеда, проведенный в 1821 г., показал, что электрический ток порождает магнитное поле. В свою очередь, изменяющееся магнитное поле способно порождать электрический ток. Это доказал английский физик Майкл Фарадей, открывший в 1831 г. явление электромагнитной индукции. Он же является автором термина «электромагнитное поле».

В те времена в физике была принята концепция дальнодействия Ньютона. Считалось, что все тела действуют друг на друга через пустоту с бесконечно большой скоростью (практически мгновенно) и на любом расстоянии. Предполагалось, что и электрические заряды взаимодействуют подобным образом. Фарадей же считал, что пустоты в природе не существует, а взаимодействие происходит с конечной скоростью через некую материальную среду. Этой средой для электрических зарядов является электромагнитное поле. И оно распространяется со скоростью, равной скорости света.

Теория Максвелла

Объединив результаты предыдущих исследований, английский физик Джеймс Клерк Максвелл в 1864 г. создал теорию электромагнитного поля. Согласно ей, изменяющееся магнитное поле порождает изменяющееся электрическое поле, а переменное электрическое поле порождает переменное магнитное поле. Конечно, вначале одно из полей создаётся источником зарядов или токов. Но в дальнейшем эти поля уже могут существовать независимо от таких источников, вызывая появление друг друга. То есть, электрическое и магнитное поля являются составляющими единого электромагнитного поля. И всякое изменение одного из них вызывает появление другого. Эта гипотеза составляет основу теории Максвелла. Электрическое поле, порождаемое магнитным полем, является вихревым. Его силовые линии замкнуты.

Эта теория феноменологическая. Это означает, что она создана на основе предположений и наблюдений, и не рассматривает причину, вызывающую возникновение электрических и магнитных полей.

Свойства электромагнитного поля

Электромагнитное поле — это совокупность электрического и магнитного полей, поэтому в каждой точке своего пространства оно описывается двумя основными величинами: напряжённостью электрического поля Е и индукцией магнитного поля В .

Так как электромагнитное поле представляет собой процесс превращения электрического поля в магнитное, а затем магнитного в электрическое, то его состояние постоянно меняется. Распространяясь в пространстве и времени, оно образует электромагнитные волны. В зависимости от частоты и длины эти волны разделяют на радиоволны, терагерцовое излучение, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское и гамма-излучение.

Векторы напряжённости и индукции электромагнитного поля взаимно перпендикулярны, а плоскость в которой они лежат, перпендикулярна направлению распространения волны.

В теории дальнодействия скорость распространения электромагнитных волн считалась бесконечной большой. Однако Максвелл доказал, что это не так. В веществе электромагнитные волны распространяются с конечной скоростью, которая зависит от диэлектрической и магнитной проницаемости вещества. Поэтому Теорию Максвелла называют теорией близкодействия.

Экспериментально теорию Максвелла подтвердил в 1888 г. немецкий физик Генрих Рудольф Герц. Он доказал, что электромагнитные волны существуют. Более того, он измерил скорость распространения электромагнитных волн в вакууме, которая оказалась равной скорости света.

В 1895 г. русский физик Александр Степанович Попов применил электромагнитные волны в беспроводной связи.

Электромагнитное поле материально. Ему присущи все признаки материальных тел: энергия, конечная скорость распространения, масса, импульс.

Уравнения Максвелла

Теорию электромагнитного поля Максвелл описал с помощью математических формул. Он обобщил множество законов и объединил их в систему из четырёх дифференциальных уравнений, которые устанавливают связь между электрическими и магнитными полями. По своей значимости в электродинамике они имеют такое же значение, как законы Ньютона в механике.

Закон Гаусса

Электрическое поле создаётся электрическим зарядом. Следовательно, заряд является источником электромагнитной индукции.

В интегральной форме этот закон выглядит так:

Закон Гаусса для магнитного поля

Поток магнитной индукции через замкнутую поверхность равен нулю.

Физический смысл этого закона в том, что в природе не существует магнитных зарядов. Полюса магнита разделить невозможно. Силовые линии магнитного поля замкнуты.

Закон индукции Фарадея

Изменение магнитной индукции вызывает появление вихревого электрического поля.

Теорема о циркуляции магнитного поля

В этой теореме описаны источники магнитного пόля, а также сами поля, создаваемые ими.

Электрический ток и изменение электрической индукции порождают вихревое магнитное поле.

Е – напряжённость электрического поля;

Н – напряжённость магнитного поля;

В – магнитная индукция. Это векторная величина, показывающая, с какой силой магнитное поле действует на заряд величиной q, движущийся со скоростью v;

D – электрическая индукция, или электрическое смещение. Представляет собой векторную величину, равную сумме вектора напряжённости и вектора поляризации. Поляризация вызывается смещением электрических зарядов под действием внешнего электрического поля относительно их положения, когда такое поле отсутствует.

Δ – оператор Набла. Действие этого оператора на конкретное поле называют ротором этого поля.

Δ х Е = rot E

ρ — плотность стороннего электрического заряда;

j — плотность тока — величина, показывающая силу тока, протекающего через единицу площади;

Читайте также:  Топиарий осень своими руками в садик

с – скорость света в вакууме.

Изучением электромагнитного поля занимается наука, называемая электродинамикой. Она рассматривает его взаимодействие с телами, имеющими электрический заряд. Такое взаимодействие называется электромагнитным. Классическая электродинамика описывает только непрерывные свойства электромагнитного поля с помощью уравнений Максвелла. Современная квантовая электродинамика считает, что электромагнитное поле обладает также и дискретными (прерывными) свойствами. И такое электромагнитное взаимодействие происходит с помощью неделимых частиц-квантов, не имеющих массы и заряда. Квант электромагнитного поля называют фотоном.

Электромагнитное поле вокруг нас

Электромагнитное поле образуется вокруг любого проводника с переменным током. Источниками электромагнитных полей являются линии электропередач, электродвигатели, трансформаторы, городской электрический транспорт, железнодорожный транспорт, электрическая и электронная бытовая техника – телевизоры, компьютеры, холодильники, утюги, пылесосы, радиотелефоны, мобильные телефоны, электробритвы — словом, всё, что связано с потреблением или передачей электроэнергии. Мощные источники электромагнитных полей – телевизионные передатчики, антенны станций сотовой телефонной связи, радиолокационные станции, СВЧ-печи и др. А так как таких устройств вокруг нас довольно много, то электромагнитные поля окружают нас повсюду. Эти поля воздействуют на окружающую среду и человека. Нельзя сказать, что это влияние всегда негативное. Электрические и магнитные поля существовали вокруг человека давно, но мощность их излучения ещё несколько десятилетий назад был в сотни раз ниже нынешнего.

До определённого уровня электромагнитное излучение может быть безопасным для человека. Так, в медицине с помощью электромагнитного излучения низкой интенсивности заживляют ткани, устраняют воспалительные процессы, оказывают обезболивающее действие. Аппараты УВЧ снимают спазмы гладкой мускулатуры кишечника и желудка, улучшают обменные процессы в клетках организма, снижая тонус капилляров, понижают артериальное давление.

Но сильные электромагнитные поля вызывают сбои в работе сердечно-сосудистой, имунной, эндокринной и нервной систем человека, могут вызывать бессонницу, головные боли, стрессы. Опасность в том, что их воздействие практически незаметно для человека, а нарушения возникают постепенно.

Каким образом защититься от окружающего нас электромагнитного излучения? Полностью это сделать невозможно, поэтому нужно постараться свести к минимуму его воздействие. Прежде всего нужно расположить бытовые приборы таким образом, чтобы они находились подальше от тех мест, где мы находимся чаще всего. Например, не нужно садиться слишком близко к телевизору. Ведь чем дальше расстояние от источника электромагнитного поля, тем слабее оно становится. Очень часто мы оставляем прибор, включенным в розетку. Но электромагнитное поле исчезает, лишь когда прибор отключается от электрической сети.

Влияют на здоровье человека и естественные электромагнитные поля – космическое излучение, магнитное поле Земли.

Электромагни́тное по́ле — фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, а также с телами, имеющими собственные дипольные и мультипольные электрические и магнитные моменты. Представляет собой совокупность электрического имагнитного полей, которые могут, при определённых условиях, порождать друг друга, а по сути являются одной сущностью, формализуемой черезтензор электромагнитного поля.

Электромагнитное поле (и его изменение со временем) описывается в электродинамике в классическом приближении посредством системыуравнений Максвелла. При переходе от одной инерциальной системы отсчета к другой электрическое и магнитное поле в новой системе отсчета — каждое зависит от обоих — электрического и магнитного — в старой, и это ещё одна из причин, заставляющая рассматривать электрическое и магнитное поле как проявления единого электромагнитного поля.

В современной формулировке электромагнитное поле представлено тензором электромагнитного поля, компонентами которого являются три компонента напряжённости электрического поля и три компонента напряжённости магнитного поля (или — магнитной индукции) [

1] , а также четырёхмерным электромагнитным потенциалом — в определённом отношении ещё более важным.

Действие электромагнитного поля на заряженные тела описывается в классическом приближении посредством силы Лоренца.

Квантовые свойства электромагнитного поля и его взаимодействия с заряженными частицами (а также квантовые поправки к классическому приближению) — предмет квантовой электродинамики, хотя часть квантовых свойств электромагнитного поля более или менее удовлетворительно описывается упрощённой квантовой теорией, исторически возникшей заметно раньше.

Возмущение электромагнитного поля, распространяющееся в пространстве, называется электромагнитной волной (электромагнитными волнами) [

2] . Любая электромагнитная волна распространяется в пустом пространстве (вакууме) с одинаковой скоростью — скоростью света (свет также является электромагнитной волной). В зависимости от длины волны электромагнитное излучение подразделяется на радиоизлучение, свет (в том числе инфракрасный и ультрафиолет), рентгеновское излучение и гамма-излучение.

История открытия

Известные ещё со времён античности электричество и магнетизм до начала XIX в. считались явлениями, не связанными друг с другом, и рассматривались в разных разделах физики.

В 1819 г. датский физик Г. Х. Эрстед обнаружил, что проводник, по которому течёт электрический ток, вызывает отклонение стрелки магнитного компаса, расположенного вблизи этого проводника, из чего следовало, что электрические и магнитные явления взаимосвязаны.

Французский физик и математик А. Ампер в 1824 г. дал математическое описание взаимодействия проводника тока с магнитным полем (см. Закон Ампера).

В 1831 г. английский физик М. Фарадей экспериментально обнаружил и дал математическое описание явления электромагнитной индукции — возникновения электродвижущей силы в проводнике, находящемся под действием изменяющегося магнитного поля.

В 1864 г. Дж. Максвелл создаёт теорию электромагнитного поля, согласно которой электрическое и магнитное поля существуют как взаимосвязанные составляющие единого целого — электромагнитного поля. Эта теория с единой точки зрения объясняла результаты всех предшествующих исследований в области электродинамики, и, кроме того, из неё вытекало, что любые изменения электромагнитного поля должны порождать электромагнитные волны, распространяющиеся в диэлектрической среде (в том числе, в пустоте) с конечной скоростью, зависящей от диэлектрической и магнитной проницаемости этой среды. Для вакуума теоретическое значение этой скорости было близко к экспериментальным измерениям скорости света, полученным на тот момент, что позволило Максвеллу высказать предположение (впоследствии подтвердившееся), что свет является одним из проявлений электромагнитных волн.

Читайте также:  Как собрать аэратор смесителя

Теория Максвелла уже при своем возникновении разрешила ряд принципиальных проблем электромагнитной теории, предсказав новые эффекты и дав надежную и эффективную математическую основу описанию электромагнитных явлений. Однако при жизни Максвелла наиболее яркое предсказание его теории — предсказание существования электромагнитных волн — не получило прямых экспериментальных подтверждений.

В 1887 г. немецкий физик Г. Герц поставил эксперимент, полностью подтвердивший теоретические выводы Максвелла. Его экспериментальная установка состояла из находящихся на некотором расстоянии друг от друга передатчика и приёмника электромагнитных волн, и фактически представляла собой исторически первую систему радиосвязи, хотя сам Герц не видел никакого практического применения своего открытия, и рассматривал его исключительно как экспериментальное подтверждение теории Максвелла.

В XX в. развитие представлений об электромагнитном поле и электромагнитном излучении продолжилось в рамках квантовой теории поля, основы которой были заложены великим немецким физиком Максом Планком. Эта теория, в целом завершенная рядом физиков около середины XX века, оказалась одной из наиболее точных физических теорий, существующих на сегодняшний день.

Во второй половине XX века (квантовая) теория электромагнитного поля и его взаимодействия была включена в единую теорию электрослабого взаимодействия и ныне входит в так называемую стандартную модель в рамках концепции калибровочных полей (электромагнитное поле является с этой точки зрения простейшим из калибровочных полей — абелевым калибровочным полем).

После открытий Фарадея стало ясно, что старые модели электромагнетизма (Ампер, Пуассон и др.) неполны, а взгляды самого Фарадея не были математически оформлены. Вскоре появилась теория Вебера, основанная на дальнодействии. Однако к этому моменту вся физика, кроме теории тяготения, имела дело только с близкодейственными силами (оптика,термодинамика, механика сплошных сред и др.). Гаусс, Риман и ряд других учёных высказывали уверенность, что свет имеет электромагнитную природу, откуда следовало, что теория электромагнитных явлений тоже должна быть близкодейственной.

Важным фактором стала и глубокая разработка к середине XIX века теории дифференциальных уравнений в частных производных для сплошных сред — по существу был готов математический аппарат теории поля.

В этой атмосфере и появилась теория Максвелла, которую её автор скромно называл математическим пересказом идей Фарадея.

В первой работе (1855—1856) Максвелл дал ряд уравнений в интегральной форме для постоянного электромагнитного поля на основе гидродинамической модели (силовые линии соответствовали трубкам тока). Эти уравнения вобрали всю электростатику, электропроводность и даже поляризацию. Магнитные явления моделируются аналогично. Во второй части работы Максвелл, уже не приводя никаких аналогий, строит модель электромагнитной индукции.

В последующих работах Максвелл формулирует свои уравнения в дифференциальной форме и вводит ток смещения. Он предсказывает существование электромагнитных волн и показывает, что их скорость равна скорости света, предсказывает давление света.

Завершающий труд Максвелла — «Трактат об электричестве и магнетизме» (1873) содержит полную систему уравнений поля в символике Хевисайда, который предложил наиболее удобный для этого аппарат — векторный анализ. Современный вид уравнениям Максвелла позже придал Герц.

Часть физиков выступила против теории Максвелла (особенно много возражений вызвала концепция тока смещения). Гельмгольц предложил свою теорию, компромиссную по отношению к моделям Вебера и Максвелла, и поручил своему ученику Генриху Герцу провести её проверку. Опыты Герца однозначно подтвердили правоту Максвелла.

Уже в 1887 году Герц построил первый в мире радиопередатчик (вибратор Герца); приёмником служил резонатор (разомкнутый проводник). В том же году Герц обнаружил ток смещения в диэлектрике (заодно открыв фотоэффект). В следующем году Герц открыл стоячие электромагнитные волны, позже с хорошей точностью измерил скорость распространения волн, обнаружил для них те же явления, что и для света: отражение, преломление, интерференция, поляризация и др.

В 1890 году Бранли изобрёл чувствительный приёмник радиоволн — когерер. Как ни странно, прошло несколько лет, прежде чем Попов и Маркони догадались соединить когерер с электрозвонком, создав первый аппарат для радиосвязи. Когерер ловил радиоволны на расстоянии до 40 метров (Оливер Лодж, 1894), а с антенной — намного дальше. Так началась эра радио.

В 60-х гг. XIX в. английский физик Д. К. Максвелл развил теорию М. Фарадея об электромагнитном поле. Так появилась теория электромагнитного поля Максвелла.

Данная теория создана только в отношении магнитных и электрических полей, успешно объясняя большинство электромагнитных явлений.

Суть электромагнитной теории Максвелла

Согласно закону Фарадея, какое-либо изменение магнитного потока, сцепленного с контуром, провоцирует возникновение электродвижущей силы (ЭДС) индукции. Следствием этого становится появление индукционного тока.

Исходя из этого следует, что возникновение ЭДС электромагнитной индукции будет возможным и в неподвижном контуре, который находится в переменном магнитном поле. При этом ЭДС в любой цепи появится только если в ней на носителей тока воздействуют сторонние силы (неэлектростатического происхождения).

Читайте также:  Расширитель для окон пвх

Такие сторонние силы не имеют отношения ни к тепловым, ни к химическим процессам в контуре. Их появление также невозможно объяснить силами Лоренца, так как они не действуют на неподвижные заряды. Максвелл предложил гипотезу о магнитном поле. Согласно данной гипотезе, любое переменное магнитное поле возбуждает электрическое в окружающем пространстве. Это поле и становится причиной появления в контуре индукционного тока.

Попробуй обратиться за помощью к преподавателям

Согласно представлениям Максвелла, контур, в котором возникает ЭДС, имеет второстепенное значение, представляя собой только лишь прибор, обнаруживающий поле. Электрическое поле, возбуждаемое магнитным, как и оно само, является вихревым. Любое изменение электрического поля должно способствовать появлению вихревого магнитного поля в окружающем пространстве.

Максвелл ввел в рассмотрение такое понятие, как ток смещения. Этот ток способен создавать магнитное поле в окружающем пространстве. Согласно уравнениям Максвелла, источниками электрополя могут быть или электрические заряды, или магнитные поля, изменяющиеся во времени. Такие поля могут возбуждаться:

  • переменными электрическими полями;
  • движущимися электрозарядами (электрическими токами).

Уравнения Максвелла не являются симметричными относительно магнитного и электрического полей. Это объясняется существованием в природе электрических зарядов и отсутствием магнитных. В стационарных случаях, если магнитное и электрическое поля во времени не изменяются, в качестве непосредственных источников электрического поля выступают только электрозаряды. При этом источниками магнитного поля выступят в этом случае только токи проводимости.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

В этой ситуации магнитное и электрическое поля будут независимыми друг от друга. Это позволяет отдельно изучать постоянные магнитные и электрические поля. Уравнения Максвелла считаются наиболее общими уравнениями для магнитных и электрических полей в покоящихся средах. В электромагнетизме им отводится такая же важная роль, как законам Ньютона в механике.

Согласно уравнениям Максвелла, переменное магнитное поле будет всегда взаимосвязано с электрическим полем, порождаемым им. При этом переменное электрополе всегда взаимосвязано с порождаемым им магнитным. Таким образом, магнитное и электрическое поля неразрывно связаны и участвуют в образовании единого электромагнитного поля.

К электромагнитному полю может применяться только принцип относительности Эйнштейна. Это объясняется несовместимостью факта распространения электромагнитных волн в вакууме с одинаковой скоростью во всех системах отсчета с принципом относительности Галилея.

Уравнения Максвелла для электромагнитной теории

Уравнения Максвелла представляют систему уравнений в интегральной или дифференциальной форме с целью описания электромагнитного поля и его связи с электрозарядами, а также токами в сплошных средах и вакууме.

Уравнения, которые сформулировал Максвелл, возникли как следствие серии важных экспериментальных открытий, сделанных в 19 в. В 1820 г. Г. Х. Эрстед сделал открытие, согласно которому гальванический ток, пропускаемый через провод, провоцирует отклонение магнитной стрелки компаса.

В том же году было экспериментально получено выражение для порождаемой током магнитной индукции (появление закона Био-Савара). А. Амперу удалось обнаружить также, что между двумя проводниками, по которым пропускается ток, возникает взаимодействие на расстоянии. Ученый вводит термин «электродинамический» и выдвигает гипотезу о связи природного магнетизма и существования в магните круговых токов.

Воздействие тока на магнит, обнаруженное Эрстедом, привело Фарадея к идее о существовании обратного влияния магнита на токи. После долгих экспериментов, в 1831 г. он делает следующее открытие: перемещающийся около проводника магнит порождает в нем электрический ток. Данное явление ученый называет электромагнитной индукцией. Фарадей вводит понятие «поля сил». Это некоторая среда, которая находится между токами и зарядами. Рассуждения Фарадея носили скорее качественный характер, но при этом существенно повлияли на исследования Максвелла.

Проведя анализ известных экспериментов, Максвелл получает систему уравнений для магнитного и электрического полей. В 1855 г. в статье о силовых линиях Фарадея ученый впервые представил систему уравнений электродинамики в дифференциальной форме, не используя понятие «ток смещения». Такая система уравнений давала описание всех известных к тому времени экспериментальных данных. При этом она не позволяла связать между собой токи и заряды и предсказать электромагнитные волны.

Дифференциальные уравнения Максвелла для электромагнитной теории

Уравнения Максвелла представляют в векторной записи систему из четырех уравнений. Эта система сводится в компонентном представлении к восьми линейным дифференциальным уравнениям в частных производных 1-го порядка для 12 компонент четырех векторных функций: $D$, $E$, $H$, $B$:

  1. электрозаряд представляет источник электрической индукции: $Delta D=4pi p$ (закон Гаусса);
  2. изменение магнитной индукции провоцирует порождение вихревого электрического поля: $Delta E=-(frac
    )$ (закон индукции Фарадея);

электроток и изменение электрической индукции участвуют в порождении вихревого магнитного поля: $Delta H=j+frac

$ (теорема циркуляции магнитного поля).
  • $p$ — объемная плотность стороннего электрозаряда;
  • $j$ -плотность электрического тока (тока проводимости);
  • $E$ считается напряженностью электрического поля;
  • $H$ — напряженность магнитного поля;
  • $D$ — будет электрической индукцией;
  • $B$ — магнитной индукцией.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Ссылка на основную публикацию
Adblock detector